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Code and tutorial material are available



Uncertainty is inherent within Machine Learning

Input space

Query sample

Output space

Query sample prediction

Easy sample? Hard sample?

Mean? Variance?
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Motivation

• Distribution estimation vs Point estimation
ØClassification: prediction with confidence
ØRegression: prediction with variance

Uncertainty: a mechanism to understand model limitations



Motivation

• Camouflaged object detection
• Salient object detection
• Monocular depth estimation

Classification

Regression



Motivation

• Which one is salient?



Motivation

• Which one is salient?



Motivation

• Where is the camouflaged object 

Camouflaged Object Segmentation dataset: Anabranch Network for Camouflaged Object Segmentation, Le et al, CVIU, 2019



Motivation

• Where is the camouflaged object



Motivation – Depth estimation from RGB

• What’s the exact distance?



Motivation – Depth estimation from RGB

• What’s the exact distance?

• Visual ambiguity and thin items foreground, problems background 
(e.g., distance limitation of sensor, less data available)



Motivation

• Model can make mistakes sometimes
• Model should be aware when it makes mistakes

Uncertainty: a mechanism to understand model limitations



Input space

Query sample

Output space

Query sample prediction

Confidence of p(y|x)?

Mean? Variance?

Variance of prediction?



Motivation

• Camouflaged object detection



Motivation

• Salient object detection



Motivation

• Monocular depth estimation

Figure from “What uncertainties do we need in bayesiandeep learning for computer vision?” by A. Kendall and Y. Gal. 



Motivation

• Well-calibrated model
• Hard-negative mining
• Dynamic confidence supervision

Confidence-Aware Learning for Camouflaged Object Detection, Liu, Zhang, Barnes, WACV 2022



Code and tutorial material are available
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Background

Given training dataset 𝐷 = {𝑥! , 𝑦!}!"#$ , the goal of machine 
learning methods:

min
!
𝔼",$ ℒ 𝑓 𝑥, 𝜃 , 𝑦 = ,ℒ 𝑓 𝑥, 𝜃 , 𝑦 𝑑𝑝(𝑥, 𝑦) ≈

1
𝑁4%&'

(
ℒ 𝑓 𝑥%, 𝜃 , 𝑦% , (𝑥%, 𝑦%)~𝑝(𝑥, 𝑦)

Loss over a continuous distribution is approximated by empirical loss 
over a dataset.



Background

Given training dataset 𝐷 = {𝑥! , 𝑦!}!"#$ , the goal of machine 
learning methods:

𝔼!,#: Expectation over input
𝑓 𝑥, 𝜃 : model hypothesis for x given model parameters 𝜃
ℒ: (.,.) loss
(𝑥$, 𝑦$)~𝑝(𝑥, 𝑦): (𝑥$, 𝑦$) input/output sampled from true distribution

min
!
𝔼",$ ℒ 𝑓 𝑥, 𝜃 , 𝑦 = ,ℒ 𝑓 𝑥, 𝜃 , 𝑦 𝑑𝑝(𝑥, 𝑦) ≈

1
𝑁
4

%&'

(
ℒ 𝑓 𝑥%, 𝜃 , 𝑦% , (𝑥%, 𝑦%)~𝑝(𝑥, 𝑦)

Ambiguity comes from 𝜃 and the representativeness of the sampled dataset 𝐷.



Given training dataset 𝐷 = {𝑥$, 𝑦$}$%&' , the predictive distribution is defined as:

𝑝 𝑦 𝑥 = ,𝑝 𝑦 𝑥, 𝜃 𝑝 𝜃 𝑑𝜃

𝑝 𝑦 𝑥, 𝜃 = 𝒩(𝑓 𝑥, 𝜃 , Σ) 𝑝 𝑦 𝑥, 𝜃 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑓 𝑥, 𝜃
exp(𝜎))

)

Background

where the likelihood of prediction is defined as: 

(Regression) Or (Classification)



Given training dataset 𝐷 = {𝑥$, 𝑦$}$%&' , the predictive distribution is defined as:

𝑝 𝑦 𝑥 = ,𝑝 𝑦 𝑥, 𝜃 𝑝 𝜃 𝑑𝜃

𝑝 𝑦 𝑥, 𝜃 = 𝒩(𝑓 𝑥, 𝜃 , Σ) 𝑝 𝑦 𝑥, 𝜃 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑓 𝑥, 𝜃
exp(𝜎))

)

Uncertainty origin: (𝝐 / Σ), 𝑝 𝜃

Aleatoric uncertainty
(Intrinsic randomness of a phenomenon [1,2])

e.g., sensor noise, labeling noise

Epistemic uncertainty
(Lack of knowledge of data [1,2])

Model noise

Background

where the likelihood of prediction is defined as: 

(Regression) Or (Classification)

1. “Aleatory or epistemic? does it matter?, A. D. Kiureghian and O. Ditlevsen, Structural Safety, 2009. 
2. What uncertainties do we need in Bayesian deep learning for computer vision? A. Kendall and Y. Gal. NeurIPS 2017



Background

Uncertainty origin: (𝜖 / Σ), 𝑝 𝜃

Aleatoric uncertainty: data related uncertainty
(Intrinsic randomness of a phenomenon [1,2])

Epistemic uncertainty: model related uncertainty
(Lack of knowledge of data [1,2])

Decision making: Medical diagnosis, automatous driving, …

Point estimation system vs Self-awareness of machine learning system

1. “Aleatory or epistemic? does it matter?, A. D. Kiureghian and O. Ditlevsen, Structural Safety, 2009. 
2. What uncertainties do we need in Bayesian deep learning for computer vision? A. Kendall and Y. Gal. NeurIPS 2017



Examples

Example and image from: Dealing with Overconfidence in Neural Networks: Bayesian 
Approach – Jonathan Ramkissoon (jramkiss.github.io)

https://jramkiss.github.io/2020/07/29/overconfident-nn/


Code and tutorial material are available
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Aleatoric Uncertainty and Epistemic Uncertainty

• Aleatoric uncertainty: randomness, inherent noise
• Epistemic uncertainty: lack of knowledge, can be explained away with 

enough data, while aleatoric uncertainty cannot.

Aleatoric uncertainty: function of input, model it over outputs
Epistemic uncertainty: function of model, model it over network parameters



Examples

• What is aleatoric uncertainty? What is epistemic uncertainty?

Figure from “What uncertainties do we need in bayesiandeep learning for computer vision?” by A. Kendall and Y. Gal. 



Aleatoric uncertainty modeling

• Image-level classification
Ø Image-independent aleatoric uncertainty—homoscedastic uncertainty
Ø Image-conditional aleatoric uncertainty---heteroscedastic uncertainty

• Pixel-level Classification/Regression
ØPixel-conditional uncertainty
Ø Image-level uncertainty
ØDataset-level uncertainty

Constant vs Learned



Aleatoric Uncertainty--Regression:

ℒ 𝜃 =
1
𝑁
6

$%&

'
(

1
2(𝜎 𝑥 )(

ℒ( +
1
2
log((𝜎 𝑥 )())

𝑥
𝑓 𝑥, 𝜃

𝜎(𝑥)

𝑦
ℒ!

For Gaussian likelihood:

Σ 𝑥 = 𝑑𝑖𝑎𝑔((𝜎 𝑥 )() is the inherent label noise with 

the basic assumption:

𝑦 = 𝑓 𝑥, 𝜃 + 𝑛 𝑥 , 𝑛(𝑥) ∼ 𝒩(0, Σ(𝑥))

𝑝 𝑦 𝑥, 𝜃 = 𝒩(𝑓 𝑥, 𝜃 , Σ(𝑥))

Uncertainty-aware loss:



Aleatoric Uncertainty--Regression:

ℒ 𝜃 =
1
𝑁
6

$%&

'
(

1
2(𝜎 𝑥 )(

ℒ( +
1
2
log((𝜎 𝑥 )())

𝑥
𝑓 𝑥, 𝜃

𝜎(𝑥)

𝑦
ℒ!

For Gaussian likelihood:

For numerical stability, define 𝑠$ = log (𝜎 𝑥 )( : ℒ 𝜃 =
1
𝑁
6

$%&

' 1
2
exp −𝑠$ ℒ( +

1
2
𝑠$

𝑈1 = (𝜎 𝑥 )(

𝑝 𝑦 𝑥, 𝜃 = 𝒩(𝑓 𝑥, 𝜃 , Σ(𝑥))

Aleatoric uncertainty:



Aleatoric Uncertainty--Classification:

For SoftMax likelihood where 𝑝 𝑦 𝑥, 𝜃 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑓 𝑥, 𝜃
exp 𝜎(

)

𝑥
𝑓 𝑥, 𝜃

𝜎(𝑥)

𝑦
ℒ"#

ℒ 𝜃 =
1
𝑁
6

$%&

'
(

1
exp 𝜎(

ℒ23 +
1
2
𝜎()

For numerical stability, define T = exp 𝜎( (the temperature):

ℒ 𝜃 =
1
𝑁
6

$%&

'
(
1
𝑇
ℒ23 +

1
2
log 𝑇 ) 𝑈1 = (𝜎 𝑥 )(



Trivial solution:

ℒ 𝜃 =
1
𝑁
6

$%&

'
(
1
2𝜎(

ℒ( +
1
2
log(𝜎()) 𝑥

𝑓 𝑥, 𝜃

𝜎(𝑥)

𝑦
ℒ

𝜎 𝑥 =1 !!, constant! Image-independent!!

For Gaussian likelihood: 𝑝 𝑦 𝑥, 𝜃 = 𝒩(𝑓 𝑥, 𝜃 , Σ(𝑥))



Trivial solution:

𝑥
𝑓 𝑥, 𝜃

𝜎(𝑥)

𝑦
ℒ

ℒ 𝜃 =
1
𝑁
6

$%&

'
(

1
exp 𝜎(

ℒ23 +
1
2
𝜎()

𝜎 𝑥 =0 !! Temperature=1!!

For SoftMax likelihood where 𝑝 𝑦 𝑥, 𝜃 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑓 𝑥, 𝜃
exp 𝜎(

)



Avoid the Trivial solution:

𝑥
𝑓 𝑥, 𝜃

𝜎(𝑥)

𝑦
ℒ

Solve it: 𝑈A = 𝔼B(C|E)[𝐻(𝑦|𝑥, 𝜃)]

Stefan Depeweg et. al. Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-
sensitive Learning. ICML. 2018

• Two types of aleatoric uncertainty definition
ØMulti-head
ØMean entropy within BNN

• Uncertainty consistency loss for sampling 
free aleatoric uncertainty estimation



Dual-head Entropy GT Prediction

𝑥
𝑓 𝑥, 𝜃

𝜎(𝑥)

𝑦
ℒ

Solve it:
𝑈$ = 𝔼%('|))[𝐻(𝑦|𝑥, 𝜃)]



Epistemic Uncertainty

• Not directly estimated
• Defined as residual of predictive uncertainty and aleatoric uncertainty
• Mutual information of model prediction and model parameters 

within Bayesian Neural Network (BNN).

𝑈* = 𝑈+ − 𝑈, = 𝐻 𝑦 𝑥 − 𝔼+ 𝜃 𝐷 𝐻 𝑦 𝑥, 𝜃 = 𝐼(𝑦, 𝜃|𝑥)

𝑈+ = 𝐻 𝑦 𝑥Given predictive uncertainty 

Stefan Depeweg et. al. Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-
sensitive Learning. ICML. 2018 

Epistemic uncertainty: 

𝐼 𝑦, 𝜃 𝑥 = 𝐻(𝑦|𝑥) − 𝐻(𝑦|𝑥, 𝜃) = 𝐻(𝑦|𝑥) − 𝔼! 𝜃 𝐷 [𝐻 𝑦 𝑥, 𝜃 ]



Epistemic Uncertainty

For Gaussian likelihood with aleatoric uncertainty 𝜎( from multi-head, the 
entropy based uncertainty is reduced to a function of variance, leading to 
epistemic uncertainty:

𝑈* = 𝔼+ 𝜃 𝐷 𝑝 𝑦 𝑥, 𝜃 ) − (𝔼+ 𝜃 𝐷 [𝑝(𝑦|𝑥, 𝜃)]))

The predictive uncertainty is then:

𝑈+ = 𝔼+ 𝜃 𝐷 𝑝 𝑦 𝑥, 𝜃 ) − (𝔼+ 𝜃 𝐷 [𝑝(𝑦|𝑥, 𝜃)])) + 𝔼+ 𝜃 𝐷 [𝜎(𝑥)) ]

aleatoric uncertainty epistemic uncertainty 

1. What uncertainties do we need in Bayesian deep learning for computer vision? A. Kendall and Y. Gal. 
NeurIPS 2017

2. Stefan Depeweg et. al. Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-
sensitive Learning. ICML. 2018 



Epistemic Uncertainty

𝑥
𝑓 𝑥, 𝜃

𝜎(𝑥)

𝑦
ℒ

𝑈, = 𝔼+(!|/)[𝐻(𝑦|𝑥, 𝜃)]

SoftMax likelihood for classification:

𝑈* = 𝑈+ − 𝑈, = 𝐻 𝑦 𝑥 − 𝔼+ 𝜃 𝐷 𝐻 𝑦 𝑥, 𝜃 = 𝐼(𝑦, 𝜃|𝑥)

𝑈+ = 𝐻 𝑦 𝑥

𝑈, = 𝜎(𝑥))

BNN 



Break
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Epistemic Uncertainty

• Not directly estimated
• Defined as residual of predictive uncertainty and aleatoric uncertainty
• Mutual information of model prediction and model parameters 

within Bayesian Neural Network (BNN).

𝑈* = 𝑈+ − 𝑈, = 𝐻 𝑦 𝑥 − 𝔼+ 𝜃 𝐷 𝐻 𝑦 𝑥, 𝜃 = 𝐼(𝑦, 𝜃|𝑥)

𝑈+ = 𝐻 𝑦 𝑥Given predictive uncertainty 

Stefan Depeweg et. al. Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-
sensitive Learning. ICML. 2018 

Epistemic uncertainty: 

𝐼 𝑦, 𝜃 𝑥 = 𝐻(𝑦|𝑥) − 𝐻(𝑦|𝑥, 𝜃) = 𝐻(𝑦|𝑥) − 𝔼! 𝜃 𝐷 [𝐻 𝑦 𝑥, 𝜃 ]



Uncertainty Approximation

• Recall that epistemic uncertainty is usually directly estimated, which 
is defined as residual of predictive uncertainty and aleatoric 
uncertainty or the mutual information of model prediction and model 
parameters within Bayesian Neural Network (BNN).

𝑈* = 𝑈+ − 𝑈, = 𝐻 𝑦 𝑥 − 𝔼+ 𝜃 𝐷 𝐻 𝑦 𝑥, 𝜃 = 𝐼(𝑦, 𝜃|𝑥)

𝑈+ = 𝐻 𝑦 𝑥Given predictive uncertainty 

Stefan Depeweg et. al. Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-
sensitive Learning. ICML. 2018 

Epistemic uncertainty: 

𝐼 𝑦, 𝜃 𝑥 = 𝐻(𝑦|𝑥) − 𝐻(𝑦|𝑥, 𝜃) = 𝐻(𝑦|𝑥) − 𝔼+ 𝜃 𝐷 [𝐻 𝑦 𝑥, 𝜃 ]



Uncertainty Approximation

• Recall: 

• no close form solution for 𝑝 𝜃 𝐷
𝑝 𝜃 𝐷 = 𝑝 𝜃 𝑥, 𝑦 = 𝑝 𝑦 𝑥, 𝜃 𝑝(𝜃)/𝑝(𝑦|𝑥), where 𝑝 𝑦 𝑥 cannot be evaluated 
analytically, thus no close form solution for 𝑝 𝜃 𝐷 .
• Approximation for Bayesian posterior inference
• Variational inference
Approximate 𝑝(𝜃|𝐷) with easy-controlled distribution 𝑞;(𝜃), 𝛾: variational 
parameters. i.e. MC-dropout
• Markov chain Monte Carlo (MCMC) methods
Sampling based solution, correlated sequence of 𝜃< ∼ 𝑝 𝜃 𝐷 . MC average is 
used as approximation of expectation----Generative model based solutions

𝑈N = 𝑈B − 𝑈A = 𝐻 𝑦 𝑥 − 𝔼B 𝜃 𝐷 𝐻 𝑦 𝑥, 𝜃 = 𝐼(𝑦, 𝜃|𝑥)



• Ensemble solutions
1. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. 

Yarin Gal, Zoubin Ghahramani. ICML. 2016
2. Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. Balaji 

Lakshminarayanan et. al. NeurIPS 2017

• Generative model solutions
1. Adversarial distillation of Bayesian neural network posteriors. Kuan-Chieh Wang et. al. 

ICML. 2018

• Bayesian latent variable model solutions
1. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? Alex 

Kendall, Yarin Gal. NeurIPS. 2017
2. Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive 

Learning. Stefan Depeweg et. al. ICML. 2018

Uncertainty Approximation
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Ensemble Solutions

• MC dropout: 
True predictive distribution:

MC average as approximation:

𝑝 𝑦 𝑥 = U𝑝 𝑦 𝑥, 𝜃 𝑝 𝜃 𝑑𝜃

𝑝(𝑦|𝑥) ≈
1
𝑇
6

<%&

=
𝑝(𝑦<|𝑥, 𝜃<)

Where        is sampled from the approximate posterior distribution 𝑞1(𝜃)𝜃2

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep 
Learning. Yarin Gal, Zoubin Ghahramani. ICML. 2016



Ensemble Solutions

• MC dropout: 

Implementation details: add dropout before every weighted layer during both 
training and testing.

Pros: easy to implement, no additional parameters
Cons: cannot control the dropout mask, mode collapse issue

Masksembles for Uncertainty Estimation. Nikita Durasov et. al. CVPR. 2021.



Ensemble Solutions

• Deep ensemble

𝑥
.
.
.

𝑓(𝑥, 𝜃+)

𝑓(𝑥, 𝜃!)

𝑓(𝑥, 𝜃,)

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. 
Lakshminarayanan, Balaji et. al. NeurIPS. 2017 



Ensemble Solutions

• Deep ensemble
Implementation details: random initialization, multi-network, multi-head.

Pros: easy to implement, usually suffer no mode collapse issue
Cons: extra parameters leading to longer training time, fixed number of 
predictions, not very flexible.



Ensemble Solutions

• Snapshot ensemble

𝑥 𝑓(𝑥, 𝜃<)

0 max _𝑒𝑝𝑜𝑐ℎ𝜃<: 𝑡 indicates epoch

Snapshot Ensembles: Train 1, Get M for Free. Gao Huang et. al. ICLR. 2017



Ensemble Solutions

• Snapshot ensemble
Implementation details: save multiple snapshots for multiple predictions

Pros: no extra parameters, easy to implement
Cons: hard to determine the snapshots point



Examples

MD: MC-dropout, DE: deep ensemble, SE: snapshot ensemble

Dense Uncertainty Estimation. Zhang et. al. 2021. https://github.com/JingZhang617/UncertaintyEstimatin

https://github.com/JingZhang617/UncertaintyEstimatin


Ensemble based Uncertainty computation—
regression
• Aleatoric uncertainty 𝑈1 =

&
=
∑<%&= 𝐻(𝑦|𝑥, 𝜃<), or 

• Epistemic uncertainty

or   

• Predictive uncertainty

𝑈B = 𝑈A + 𝑈N

𝑈N = 𝐻 P
Q
∑RSPQ 𝑝 𝑦 𝑥, 𝜃R − P

Q
∑RSPQ 𝐻(𝑦|𝑥, 𝜃R)

𝑈A = 𝜎(𝑥)T

𝑈3 = 𝔼> 𝜃 𝐷 𝑝 𝑦 𝑥, 𝜃 ( − (𝔼> 𝜃 𝐷 [𝑝(𝑦|𝑥, 𝜃)])(



Ensemble based Uncertainty computation--
classification
• Aleatoric uncertainty

𝑈A =
P
Q
∑RSPQ 𝐻(𝑦|𝑥, 𝜃R), or 

• Predictive uncertainty

• Epistemic uncertainty

𝑈B = 𝐻(
1
𝑇
7

RSP

Q
𝑝 𝑦 𝑥, 𝜃R )

𝑈N = 𝐻 P
Q
∑RSPQ 𝑝 𝑦 𝑥, 𝜃R − P

Q
∑RSPQ 𝐻(𝑦|𝑥, 𝜃R)

𝑈A = 𝜎(𝑥)T



Examples

Aleatoric uncertainty: 
inherent noisy region
Epistemic uncertainty: 
hard samples
Predictive uncertainty: 
both

Dense Uncertainty Estimation. Zhang et. al. 2021. https://github.com/JingZhang617/UncertaintyEstimation

https://github.com/JingZhang617/UncertaintyEstimatin
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Generative model solutions

• Latent variable models 
• Energy-based model



Latent variable models

• A latent variable is a variable which is not directly observable and is assumed to 
affect the observable variables (manifest variables) 
• A latent variable model is a statistical model that relates a set of observable 

variables to a set of latent variables (Latent Variable Models and Factor Analysis, 
David J. Bartholomew et. al, 2011)
• More formally, a latent variable model (LVM) is a probability distribution over two 

sets of variables 𝑥 and 𝑧 as                    , or over three sets of variables 𝑥, 𝑦 and 𝑧
as                        for the conditional version of the latent variable models with the 
conditional variable 𝑥.

𝑝?(𝑥, 𝑧)
𝑝?(𝑦|𝑥, 𝑧)

𝑥 𝑧

𝑝3(𝑧|𝑥)

𝑝!(𝑥|𝑧)

𝑦𝑥

𝑧
𝑝-(𝑧|𝑥, 𝑦)

𝑝'(
𝑦|𝑥
, 𝑧)



Latent variable model solutions

• Predictive distribution with extra latent variable 𝑧

𝑝 𝑦 𝑥 = U𝑝? 𝑦 𝑥, 𝑧 𝑝 𝜃 𝑝 𝑧 𝑑𝜃𝑑𝑧

Regression Likelihood:

Classification Likelihood:

𝑝! 𝑦 𝑥, 𝑧 = 𝒩(𝑓! 𝑥, 𝑧 , Σ)

𝑝! 𝑦 𝑥, 𝑧 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑓! 𝑥, 𝑧 /exp(𝜎)))

Uncertainty origin: (𝜖 / Σ), 𝑧,  𝑝 𝜃

Aleatoric uncertainty

Epistemic uncertainty



• CVAE—Conditional Variational Auto-encoder
ØAuto-Encoding Variational Bayes. Kingma, Diederik et. al. ICLR. 2014
ØLearning Structured Output Representation using Deep Conditional Generative Models. Sohn, 

Kihyuk et. al. NeurIPS. 2015

• CGAN—Conditional Generative Adversarial Nets
ØGenerative Adversarial Nets. Goodfellow, Ian et. al. NeurIPS. 2014
ØConditional Generative Adversarial Nets. Mehdi Mirza, Simon Osindero. arXiv. 2014

• ABP—Alternating Back-Propagation
ØAlternating Back-Propagation for Generator Network. Tian Han et. al. AAAI. 2016

Latent variable model solutions



Latent variable model solutions—VAE/CVAE

𝑥 𝑧

𝑝3(𝑧|𝑥)

𝑝!(𝑥|𝑧)

𝑦𝑥

𝑧
𝑝-(𝑧|𝑥, 𝑦)

𝑝'(
𝑦|𝑥
, 𝑧)

• VAE: unsupervised feature representation

• CVAE: latent feature exploring



• CVAE: conditional directed graph model

𝑥

𝑦
c 𝑞.(𝑧|𝑥, 𝑦)

Inference model

Prior model

𝑝'(𝑧|𝑥)

𝑝/∼1!(/|2,4)(𝑦|𝑥, 𝑧)

𝑝/∼%"(/|2)(𝑦|𝑥, 𝑧)

ℒ 𝜃, 𝜙; 𝑥 = 𝔼4!(5|",$) log 𝑝! 𝑦 𝑥, 𝑧 − 𝐷67(𝑞8 𝑧 𝑥, 𝑦 ||𝑝!(𝑧|𝑥))

1. A Probabilistic U-Net for Segmentation of Ambiguous Images. Simon Kohl et. al. NeurIPS. 2018 
2. UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders. 

Jing Zhang et. al. CVPR. 2020



Latent variable model solutions—GAN/CGAN
• GAN: min-max game
• discriminator seeks to maximize the probability assigned to real and fake images

max(log 𝐷 𝑥 + log(1 − 𝐷(𝐺(𝑧)))) or min(ℒ23 𝐷 𝑥 , 1 + ℒ23 𝐷 𝐺(𝑧) , 0 )

• generator learns to generate samples that have a low possibility of being fake by 
minimizing the log of the inverse probability predicted by the discriminator for 
fake images.

min( log(1 − 𝐷(𝐺(𝑧))))



• CGAN for dense prediction

𝑥

𝑧

𝑦𝐺 𝐷 Real?

Fake?

ℒ9 = ℒ:; 𝑓9 𝑥, 𝑧 , 𝑦 + 𝜆ℒ:;(𝐷(𝑓9 𝑥, 𝑧 , 1))

ℒ/ = ℒ:; 𝐷(𝑦), 1 + ℒ:;(𝐷(𝑓9 𝑥, 𝑧 , 0))

Adversarial Learning for Semi-Supervised Semantic Segmentation. Wei-Chih Hung et. al. BMVC 2018



Explain ABP

• VAE—Inference model is needed
• GAN–Discriminator is needed with no inference model

• ABP—Alternating Back-Propagation 
ØInfer the latent variable directly from the true posterior distribution
ØNo extra parameters



Alternating Back-Propagation

• Define the generative model as:
𝑧 ∼ 𝑝 𝑧 = 𝒩 0,1

𝑦 = 𝑓C 𝑥, 𝑧 + 𝜖, 𝜖 ∼ 𝒩(0, ∑)
• The conditional distribution of 𝑦 is defined as:

𝑝C 𝑦 𝑥 = >𝑝 𝑧 𝑝C 𝑦 𝑥, 𝑧 𝑑𝑧

• Define the observed data log-likelihood as log(𝑝C 𝑦 𝑥 ), it’s gradient 
is then:

𝜕
𝜕𝜃

log 𝑝C 𝑦 𝑥 = 𝔼B!(_|`,a)
𝜕
𝜕𝜃

log(𝑝C(𝑦, 𝑧|𝑥)



• The observed data log-likelihood:
𝜕
𝜕𝜃

log 𝑝C 𝑦 𝑥 = 𝔼B!(_|`,a)
𝜕
𝜕𝜃

log(𝑝C(𝑦, 𝑧|𝑥)

where the expectation term can be approximated with Langevin 
dynamics based MCMC (a gradient based MCMC) to sample 𝑧 from it’s 
true posterior distribution via:

Alternating Back-Propagation

𝑧RbP = 𝑧R +
𝑠T

2
𝜕
𝜕𝑧
log 𝑝C(𝑦, 𝑧R|𝑥) + 𝑠𝒩(0,1)

With:
c
c_
log 𝑝C(𝑦, 𝑧R|𝑥)=

P
d"
(𝑦 − 𝑓C(𝑥, 𝑧))

c
c_
𝑓C(𝑥, 𝑧)−𝑧

: time step for Langevin sampling : step size𝑠𝑡



• ABP for dense prediction

𝑥

𝑧
𝒩(0,1)

𝑦

Langevin Dynamic 
based MCMC

Different from VAE or GAN that involves extra modules (inference model for VAE and discriminator for 
GAN), ABP sample directly from the true posterior distribution via gradient based MCMC.



Energy-based model

• Latent variable model
Øestimate the distribution of the latent variable
ØEstimate the predictive distribution

• Energy-based model
ØEstimate predictive distribution directly.



Energy-based model solution

• EBM: energy-based model, learns an energy function to assign low 
energy to in-distribution samples and high energy for others.

• Energy-based model:

𝑝f 𝑦 𝑥 =
𝑝f(𝑦, 𝑥)

∫ 𝑝f 𝑦, 𝑥 𝑑𝑦
=

1
𝑍(𝑥; 𝛾)

exp −𝑈f(𝑦, 𝑥)

𝑈1(𝑦, 𝑥) : the energy function

𝑍 𝑥; 𝛾 = ,exp −𝑈1 𝑦, 𝑥 𝑑𝑦 : the normalizing constant

A tutorial on energy-based learning. Yann LeCun. 2006



Energy-based model solution

• Energy-based model:

𝑝f 𝑦 𝑥 =
𝑝f(𝑦, 𝑥)

∫ 𝑝f 𝑦, 𝑥 𝑑𝑦
=

1
𝑍(𝑥; 𝛾)

exp −𝑈f(𝑦, 𝑥)

When the energy function 𝑈f is learned and input image 𝑥 is given, 
prediction can be achieved via Langevin sampling: 𝑦 ∼ 𝑝f 𝑦 𝑥 :

𝑦<H& = 𝑦< −
𝜎(

2
𝜕𝑈; 𝑦<, 𝑥

𝜕𝑦
+ 𝛿Δ<, Δ< ∼ 𝒩(0,1)

Cooperative Training of Descriptor and Generator Networks. Xie, Jianwen et. al. TPAMI. 2018



Energy-based model solution

• EBM: 1) start point of Langevin sampling, 2) train the energy function 𝑈f

Start point:
1) Any deterministic model 𝑓?(𝑥)
2) Any latent variable model 𝑓?(𝑥, 𝑧)

Learn 𝑈f : maximum likelihood estimation

Δ𝛾 ≈
1
𝑁
7

iSP

j 𝜕
𝜕𝛾
𝑈f 𝑓C(𝑥i), 𝑥i −

1
𝑁
7

iSP

j 𝜕
𝜕𝛾
𝑈f 𝑦i , 𝑥i
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Bayesian latent variable model solutions

• Bayesian Neural Network
• Latent variable model
Predictive distribution:

𝑝 𝑦 𝑥 = >𝑝C 𝑦 𝑥, 𝑧 𝑝 𝜃 𝑝 𝑧 𝑑𝜃𝑑𝑧

Regression Likelihood:

Classification Likelihood:

𝑝! 𝑦 𝑥, 𝑧 = 𝒩(𝑓! 𝑥, 𝑧 , Σ)

𝑝! 𝑦 𝑥, 𝑧 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑓! 𝑥, 𝑧 /exp(𝜎))

Uncertainty origin: (𝜖, Σ), 𝑧,  𝑝 𝜃

Aleatoric uncertainty

Epistemic uncertainty



Generative model based Uncertainty 
computation—regression
• Aleatoric uncertainty 𝑈1 =

&
=
∑<%&= 𝐻(𝑦|𝑥, 𝜃<), or 

• Epistemic uncertainty

or   

• Predictive uncertainty

𝑈B = 𝑈A + 𝑈N

𝑈N = 𝐻 P
Q
∑RSPQ 𝑝 𝑦 𝑥, 𝜃R − P

Q
∑RSPQ 𝐻(𝑦|𝑥, 𝜃R)

𝑈A = 𝜎(𝑥)T

𝑈3 = 𝔼> 𝜃 𝐷 𝑝 𝑦 𝑥, 𝜃 ( − (𝔼> 𝜃 𝐷 [𝑝(𝑦|𝑥, 𝜃)])(



Generative model based Uncertainty 
computation--classification
• Aleatoric uncertainty

𝑈A =
P
Q
∑RSPQ 𝐻(𝑦|𝑥, 𝜃R), or 

• Predictive uncertainty

• Epistemic uncertainty

𝑈B = 𝐻(
1
𝑇
7

RSP

Q
𝑝 𝑦 𝑥, 𝜃R )

𝑈N = 𝐻 P
Q
∑RSPQ 𝑝 𝑦 𝑥, 𝜃R − P

Q
∑RSPQ 𝐻(𝑦|𝑥, 𝜃R)

𝑈A = 𝜎(𝑥)T
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Experiments--Uncertainty quality measure?

• Expected calibration error
ØOn Calibration of Modern Neural Networks. Chuan Guo et. al. ICML. 2017

• Patch accuracy vs patch uncertainty
ØEvaluating Bayesian Deep Learning Methods for Semantic Segmentation. 

Jishnu Mukhoti and Yarin Gal. Arxiv. 2018

• Evaluation on out-of-distribution samples



Experiments--Tasks

• Camouflaged object detection
• Salient object detection



COD

• Where is the camouflaged object 



Camouflaged object detection

1. Base: the base model
2. MD: MC-dropout
3. DE: deep ensemble

1. Base: the base model
2. CVAE: the CVAE based framework
3. CGAN: the CGAN based framework
4. ABP: the ABP based framework
5. EBM: the EBM based framework



Predictive Uncertainty-Ensemble



Predictive Uncertainty-Generative Model



Aleatoric Uncertainty-Ensemble



Aleatoric Uncertainty-Generative Model



Epistemic Uncertainty-Ensemble



Epistemic Uncertainty-Generative Model



Three types of uncertainty



Observations

• Aleatoric uncertainty focus on inherent noise, i.e. object boundaries
• Epistemic uncertainty highlight challenging pixels, representing our 

ignorance about which model generated the given dataset. 
• COD: aleatoric uncertainty vs epistemic uncertainty



SOD

• Which one is salient?



Salient object detection

1. Base: the base model
2. MD: MC-dropout
3. DE: deep ensemble

1. Base: the base model
2. CVAE: the CVAE based framework
3. CGAN: the CGAN based framework
4. ABP: the ABP based framework
5. EBM: the EBM based framework



Predictive Uncertainty-Ensemble



Predictive Uncertainty-Generative Model



Aleatoric Uncertainty-Ensemble



Aleatoric Uncertainty-Generative Model



Epistemic Uncertainty-Ensemble



Epistemic Uncertainty-Generative Model



Three types of uncertainty

MC-dropout CGAN



Observations

• Aleatoric uncertainty focus on inherent noise, i.e. object boundaries
• Epistemic uncertainty highlight challenging pixels, representing our 

ignorance about which model generated the given dataset. 
• SOD: aleatoric uncertainty vs epistemic uncertainty



Discussion

• Sampling-free uncertainty estimation
• Pixel-level uncertainty vs Instance-level uncertainty
• How to effectively use the produced uncertainty
• Model calibration and uncertainty estimation
• Out-of-distribution detection and uncertainty estimation
• Multi-modal/multi-task learning
• Semi-/weakly-supervised learning
• Effectiveness measure



Thanks Contact: zjnwpu@gmail.com

Code and tutorial material are available

Thanks Bushfire CoE for the support.
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