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Code and tutorial material are available
Uncertainty estimation models

We provide the implementation details of uncertainty estimation techniques. Including the ensemble based
solutions and generative model based methods.



Uncertainty is inherent within Machine Learning

Input space Output space

Mean? Variance?

Query sample .
y P Quer ofediction

Easy sample?  Hard sample?



Outline

* Motivation
* Background
* Aleatoric uncertainty and Epistemic Uncertainty

* Uncertainty Approximation

v Ensemble solutions
v'Generative model solutions
v'Bayesian latent variable model solutions

* Experiments
e Discussion and Conclusion



Motivation

* Distribution estimation vs Point estimation

» Classification: prediction with confidence
» Regression: prediction with variance

Uncertainty: a mechanism to understand model limitations



Motivation

 Camouflaged object detection
Classification
e Salient object detection )

* Monocular depth estimation Regression



Motivation

e Which one is salient?




Motivation

e Which one is salient?




Motivation

 Where is the camouflaged object

Camouflaged Object Segmentation dataset: Anabranch Network for Camouflaged Object Segmentation, Le et al, CVIU, 2019



Motivation

 Where is the camouflaged object




Motivation — Depth estimation from RGB

 What’s the exact distance?
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Motivation — Depth estimation from RGB

 What’s the exact distance?

* VVisual ambiguity and thin items foreground, problems background
(e.g., distance limitation of sensor, less data available)



Motivation

e Model can make mistakes sometimes
e Model should be aware when it makes mistakes

Uncertainty: a mechanism to understand model limitations



Input space Output space

Mean? Variance?

prrrer e
e

Query sample

Quer ofediction

Confidence of p(y|x)? Variance of prediction?
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Motivation

 Salient object detection




Motivation

* Monocular depth estimation

Figure 5: NYUv2 Depth results. From left: input image, ground truth, depth regression, aleatoric uncertainty,
and epistemic uncertainty.

Figure from “What uncertainties do we need in bayesiandeep learning for computer vision?” by A. Kendall and Y. Gal.



Motivation

* Well-calibrated model
* Hard-negative mining
* Dynamic confidence supervision

LICNEC) %

Image Pw/oconfi P w/confi Confidence

Confidence-Aware Learning for Camouflaged Object Detection, Liu, Zhang, Barnes, WACV 2022
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Background

Given training dataset D = {x;, y;}i-, the goal of machine
learning methods:

1 N
mjn By £ G, 00,)] = [ £FGr,00,9)dpy) = 3 D L0 i 0,3, G y)~p )

Loss over a continuous distribution is approximated by empirical loss
over a dataset.



Background

Given training dataset D = {x;, y;}i-,, the goal of machine
learning methods:

1 N
min By [L£(F (5, 00,)] = [ L(FGr,00,9)dp(y) = 3 D L0 G 8,30, Gr y)~p(x,)

[E, y: Expectation over input

f (x, 8): model hypothesis for x given model parameters 6

L:(.,.) loss

(x;, vi)~p(x,¥): (x;, ¥;) input/output sampled from true distribution

Ambiguity comes from 6 and the representativeness of the sampled dataset D.



Background

Given training dataset D = {x;, y; IiV:1’ the predictive distribution is defined as:

p(y1x) = j p(ylx, 0)p(6)d6

where the likelihood of prediction is defined as:
f(x,0)
exp(a?)

p(¥|x,0) = N(f(x,0),Z) (Regression) Or p¥lx,0) = Softmax( ) (Classification)



Background

Given training dataset D = {x;, y; IiV:1’ the predictive distribution is defined as:

p(ylx) = Jp(ylx, 0)p(6)do

where the likelihood of prediction is defined as:

x,0
p(ylx,0) = N(f(x,60),Z) (Regression) or p|x,0) = Softmax(e];;(gz))) (Classification)
Uncertinty origin: (/%) p@)____
Aleatoric uncertainty Epistemic uncertainty
(Intrinsic randomness of a phenomenon [1,2])  (Lack of knowledge of data [1,2])
e.g., sensor noise, labeling noise Model noise

1. “Aleatory or epistemic? does it matter?, A. D. Kiureghian and O. Ditlevsen, Structural Safety, 2009.
2. What uncertainties do we need in Bayesian deep learning for computer vision? A. Kendall and Y. Gal. NeurIPS 2017



Background

Uncertainty origin: (€ / X), p(6)
Aleatoric uncertainty: data related uncertainty
(Intrinsic randomness of a phenomenon [1,2])

Epistemic uncertainty: model related uncertainty
(Lack of knowledge of data [1,2])

Point estimation system vs Self-awareness of machine learning system

Decision making: Medical diagnosis, automatous driving, ...

1. “Aleatory or epistemic? does it matter?, A. D. Kiureghian and O. Ditlevsen, Structural Safety, 2009.
2. What uncertainties do we need in Bayesian deep learning for computer vision? A. Kendall and Y. Gal. NeurlPS 2017



Examples

Prediction: dog Prediction: dog
Probability: 0.98 Probability: 0.95

A 13
v -
1 e

Parsed an image of myself through the animal network and it's 98% confident I'm a dog.

Example and image from: Dealing with Overconfidence in Neural Networks: Bayesian
Approach — Jonathan Ramkissoon (jramkiss.github.io)



https://jramkiss.github.io/2020/07/29/overconfident-nn/
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Code and tutorial material are available
Uncertainty estimation models

We provide the implementation details of uncertainty estimation techniques. Including the ensemble based
solutions and generative model based methods.
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* Aleatoric uncertainty and Epistemic Uncertainty



Aleatoric Uncertainty and Epistemic Uncertainty

* Aleatoric uncertainty: randomness, inherent noise

* Epistemic uncertainty: lack of knowledge, can be explained away with
enough data, while aleatoric uncertainty cannot.

Aleatoric uncertainty: function of input, model it over outputs
Epistemic uncertainty: function of model, model it over network parameters



Examples

 What is aleatoric uncertainty? What is epistemic uncertainty?

(a) Input Image (b) Ground Truth  (c) Semantic (d) Aleatoric (e) Epistemic
Segmentation Uncertainty Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic
uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

Figure from “What uncertainties do we need in bayesiandeep learning for computer vision?” by A. Kendall and Y. Gal.



Aleatoric uncertainty modeling

* Image-level classification

» Image-independent aleatoric uncertainty—homoscedastic uncertainty
» Image-conditional aleatoric uncertainty---heteroscedastic uncertainty

* Pixel-level Classification/Regression

» Pixel-conditional uncertainty
» Image-level uncertainty
» Dataset-level uncertainty

Constant vs Learned



Aleatoric Uncertainty--Regression:

For Gaussian likelihood: p(y|x,0) = N (f(x, 8), Z2(x))
»(x) = diag((o(x))?) is the inherent label noise with

the basic assumption:
y = f(x,0) + n(x),n(x) ~ N(0,%(x)) x‘D<

| 1N 1 1
Uncertainty-aware loss:  L(0) = NEizl(Z(G(x))z Ly + 5108((0(95))2))

L,
— f(x,0) «—y

—o(x)

B[




Aleatoric Uncertainty--Regression:

For Gaussian likelihood: p(y|x,8) = N (f(x,0),Z(x))

1N 1 1
LO) =3 ), GrryyrLe +5108(0())) <

L,
— f(x,0) «—y

—>a(x)

B[

1 N1 1
For numerical stability, define s; = log((a(x))z) . L(0) = Nz (E exp(—s;) L, + Esi)
i=1

Aleatoric uncertainty: U, = (a(x))2



Aleatoric Uncertainty--Classification:

f(x,0)
exp(o?)

1V 1 1 x4D<
L= Nz:izl(exp(az) Lee EGZ)

For numerical stability, define T = exp(a?) (the temperature):

For SoftMax likelihood where p(y|x,8) = Softmax( )

Lce

—a(x)

Wil

1N 1 1
£O) =5 ), G Lee+5108(T) Ua = (@)’



Trivial solution:

For Gaussian likelihood: p(y|x,8) = N (f(x,8),Z(x))

L
— f(x,0) «—y

L(H)—lz:N L+ oo
=N i:1(202 2 Zog(a )

—a(x)

o(x)=1!1, constant! Image-independent!!



Trivial solution:

x,0
For SoftMax likelihood where p(y|x,8) = Softmax(e];;( 2)))
L
— ’Q «—
(O =5 (b +507 x N
= — -0
N Luj—q1 exp(02) 2 L o (%)

o(x)=0!! Temperature=1!



Avoid the Trivial solution:

* Two types of aleatoric uncertainty definition

» Multi-head L
»Mean entropy within BNN — f(x,0) «—y
* Uncertainty consistency loss for sampling S
free aleatoric uncertainty estimation
Solve it: Ua = IEP(9|D)[H(y|x,9)] s

Stefan Depeweg et. al. Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-
sensitive Learning. ICML. 2018



L

|

GT Prediction

B[

—>0(X) .,

Uy = Epoimy[HQ|x, 0)]

Dual-head



Epistemic Uncertainty

* Not directly estimated
* Defined as residual of predictive uncertainty and aleatoric uncertainty

* Mutual information of model prediction and model parameters
within Bayesian Neural Network (BNN).

Given predictive uncertainty U, = H(y|x)
Epistemic uncertainty: U, = Up — U, = H(ylx) - [Ep(9|D)[H(Y|X; 0)] = I(y,0]x)
I(y,6]x) = H(y|x) — H(y|x,6) = H(y|x) — E, (g p)[H(y|x, 6)]

Stefan Depeweg et. al. Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-
sensitive Learning. ICML. 2018



Epistemic Uncertainty

For Gaussian likelihood with aleatoric uncertainty o from multi-head, the
entropy based uncertainty is reduced to a function of variance, leading to

epistemic uncertainty:
Ue = E,g0)[p(Ix, 0)%] = (g 0y [P (71, 6)])2

The predictive uncertainty is then:
Up = Ep90)[p(1x, )%] — (Ep 9Dy [P 0%, )D? + Epgpylo(x)? ]
& J

- J
Y Y

epistemic uncertainty aleatoric uncertainty

1. What uncertainties do we need in Bayesian deep learning for computer vision? A. Kendall and Y. Gal.
NeurlPS 2017
2. Stefan Depeweg et. al. Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-

sensitive Learning. ICML. 2018



Epistemic Uncertainty

BNN I

SoftMax likelihood for classification: — f(x,0) «—y

U, = H(y|x) BRGA2ARY

Ue = Up = Ug = Hy|x) — E,(gp)[H(¥|x,0)] = I(y,0]x)

Ua = O'(x)2< ................... > Ua — IEp(ng)[H(ylx’ 0)] K



Break
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Epistemic Uncertainty

* Not directly estimated
* Defined as residual of predictive uncertainty and aleatoric uncertainty

* Mutual information of model prediction and model parameters
within Bayesian Neural Network (BNN).

Given predictive uncertainty U, = H(y|x)
Epistemic uncertainty: U, = Up — U, = H(ylx) - [Ep(9|D)[H(Y|X; 0)] = I(y,0]x)
I(y,6]x) = H(y|x) — H(y|x,6) = H(y|x) — E, (g p)[H(y|x, 6)]

Stefan Depeweg et. al. Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-
sensitive Learning. ICML. 2018



Uncertainty Approximation

* Recall that epistemic uncertainty is usually directly estimated, which
is defined as residual of predictive uncertainty and aleatoric
uncertainty or the mutual information of model prediction and model
parameters within Bayesian Neural Network (BNN).

Given predictive uncertainty U, = H(y|x)
Epistemic uncertainty: U, = U, — U, = H(y|x) — IEp(9|D)[H(y|x,9)] = I(y,0]|x)

I(y,0lx) = Hy|x) = H(y|x,8) = H(y|x) — E,g|p)[H (¥|x, 6)]

Stefan Depeweg et. al. Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-
sensitive Learning. ICML. 2018



Uncertainty Approximation

* Recall: U, =U, —U, = H(y|x) — IEp(ng)[H(ny, )] =1(y,0|x)

* no close form solution for p(8|D)

p(@|D) = pOlx,y) = p(ylx,0)p(8)/p(y|x), where p(y|x) cannot be evaluated
analytically, thus no close form solution for p(6|D).
* Approximation for Bayesian posterior inference

 Variational inference

Approximate p(6|D) with easy-controlled distribution g, (8), y: variational
parameters. i.e. MC-dropout
 Markov chain Monte Carlo (MCMC) methods

Sampling based solution, correlated sequence of 8; ~ p(6|D). MC average is
used as approximation of expectation----Generative model based solutions



Uncertainty Approximation

* Ensemble solutions

1. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning.
Yarin Gal, Zoubin Ghahramani. ICML. 2016

2. Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. Balaji
Lakshminarayanan et. al. NeurlPS 2017

e Generative model solutions

1. Adversarial distillation of Bayesian neural network posteriors. Kuan-Chieh Wang et. al.
ICML. 2018

* Bayesian latent variable model solutions

1. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? Alex
Kendall, Yarin Gal. NeurlPS. 2017

2. Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive
Learning. Stefan Depeweg et. al. ICML. 2018



Outline

* Uncertainty Approximation
v'Ensemble solutions
v MC-dropout
v’ Deep ensemble
v Snapshots ensemble



Ensemble Solutions

* MC dropout:
True predictive distribution:

p(ylx) = fp(ylx,ﬁ)p(e)de

1 T
MC average as approximation: p(y|x) ~ = E p(Vel|x, 60¢)
t=1

Where 6, is sampled from the approximate posterior distribution q, ()

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep
Learning. Yarin Gal, Zoubin Ghahramani. ICML. 2016



Ensemble Solutions

* MC dropout:

Implementation details: add dropout before every weighted layer during both
training and testing.

Pros: easy to implement, no additional parameters
Cons: cannot control the dropout mask, mode collapse issue

Masksembles for Uncertainty Estimation. Nikita Durasov et. al. CVPR. 2021.



Ensemble Solutions
/ji >f(x,61)
.Q—-’f(xﬁr)

* Deep ensemble

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles.
Lakshminarayanan, Balaji et. al. NeurlIPS. 2017



Ensemble Solutions

* Deep ensemble
Implementation details: random initialization, multi-network, multi-head.

Pros: easy to implement, usually suffer no mode collapse issue

Cons: extra parameters leading to longer training time, fixed number of
predictions, not very flexible.



Ensemble Solutions

* Snapshot ensemble

v—f 0 £

0 8;: t indicates epoch max _epoch

Snapshot Ensembles: Train 1, Get M for Free. Gao Huang et. al. ICLR. 2017



Ensemble Solutions

* Snapshot ensemble
Implementation details: save multiple snapshots for multiple predictions

Pros: no extra parameters, easy to implement
Cons: hard to determine the snapshots point



Examples

Image GT MD Uncertainty DE Uncertainty SE Uncertainty

MD: MC-dropout, DE: deep ensemble, SE: snapshot ensemble

Dense Uncertainty Estimation. Zhang et. al. 2021. https://github.com/JingZhang617/UncertaintyEstimatin



https://github.com/JingZhang617/UncertaintyEstimatin

Ensemble based Uncertainty computation—
regression

e Aleatoric uncertainty U — = I H(ylx,0.),or U, = o(x 2
a = 7 Lt=11 t a

* Epistemic uncertainty

Ue = EpgD)[p(1x, 0)%] — (B, (g p) [P X, O)])?
or

1 1
U.=H (; {=1 p(ylx, Qt)) . ;ZZ=1 H(y|x, 0¢)

* Predictive uncertainty

U, = Uy + U,



Ensemble based Uncertainty computation--
classification

e Aleatoric uncertainty
1
Ug = =311 Hy|%,8,), or Uy = 0(x)?

* Predictive uncertainty
T

1
Up =HGZ D px,00)

t=1

* Epistemic uncertainty

1 1
U, =H (; Z:1 p(ylx, Ht)) T Z=1 H(y|x, 0;)



Examples

Aleatoric uncertainty:
inherent noisy region
Epistemic uncertainty:
hard samples
Predictive uncertainty:
both

Image e Predictive Aleatoric Epistemic

Dense Uncertainty Estimation. Zhang et. al. 2021. https://github.com/JingZhang617/UncertaintyEstimation



https://github.com/JingZhang617/UncertaintyEstimatin

Outline

* Uncertainty Approximation

v'Generative model solutions



Generative model solutions

e Latent variable models
* Energy-based model



Latent variable models

* A latent variable is a variable which is not directly observable and is assumed to
affect the observable variables (manifest variables)

* A latent variable model is a statistical model that relates a set of observable
variables to a set of latent variables (Latent Variable Models and Factor Analysis,
David J. Bartholomew et. al, 2011)

* More formally, a latent variable model (LVM) is a probability distribution over two
sets of variables x and z as pg(x,z) , or over three sets of variables x, y and z
as Po(Y|x,Z) for the conditional version of the latent variable models with the
conditional variable x.

Py (z]x)
/(L_\. MZIxm

[ ﬂ\* "
pg(x|2) o



Latent variable model solutions

* Predictive distribution with extra latent variable z

p(ylx) = f po(y1x, D)p(O)p(2)d0dz

Regression Likelihood: Uncertainty origin: (€ / Z), z, p(6)

pe(ylx,z) = N (fo(x,2),%)
Aleatoric uncertainty

Classification Likelihood:
pe(¥lx, z) = Softmax(fy(x,z)/exp(c?))

Epistemic uncertainty



Latent variable model solutions

e CVAE—Conditional Variational Auto-encoder

» Auto-Encoding Variational Bayes. Kingma, Diederik et. al. ICLR. 2014

» Learning Structured Output Representation using Deep Conditional Generative Models. Sohn,
Kihyuk et. al. NeurlPS. 2015

e CGAN—Conditional Generative Adversarial Nets

» Generative Adversarial Nets. Goodfellow, lan et. al. NeurlPS. 2014
» Conditional Generative Adversarial Nets. Mehdi Mirza, Simon Osindero. arXiv. 2014

 ABP—AIlternating Back-Propagation
» Alternating Back-Propagation for Generator Network. Tian Han et. al. AAAI. 2016



Latent variable model solutions—VAE/CVAE

e VAE: unsupervised feature representation

/pﬂ(z_lk

X Z

N~
Po(x|2)

* CVAE: latent feature exploring



* CVAE: conditional directed graph model

j i > pz~q¢(z|x,y) ()1|X, Z)

Inference model Pz~pe(zlx) V|, 2)

— X
>@-*}CI¢(Z|X;J’)
y
j—m(zlx)

Prior model

v

v

L(6, p; x) = Eq, z1x.3)[l0g(pe (v1x, 2))] — Dk1(q4 (21, )| |pg (2|x))

1. A Probabilistic U-Net for Segmentation of Ambiguous Images. Simon Kohl et. al. NeurlIPS. 2018
2. UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders.
Jing Zhang et. al. CVPR. 2020



Latent variable model solutions—GAN/CGAN

* GAN: min-max game
 discriminator seeks to maximize the probability assigned to real and fake images

max(log(D(x)) + log(1 — D(G(2)))) or min(L.(D(x), 1) + L. (D(G(2)),0))

e generator learns to generate samples that have a low possibility of being fake by
minimizing the log of the inverse probability predicted by the discriminator for
fake images.

min(log(1 — D(G(2))))



* CGAN for dense prediction

Le=Lep(fe(x,2),y) + AL (D(f(x,2),1))
Lp=Leg(DW), 1) + Leg(D(fe(x, 2),0))

Adversarial Learning for Semi-Supervised Semantic Segmentation. Wei-Chih Hung et. al. BMVC 2018



Explain ABP

e VAE—Inference model is needed
e GAN—Discriminator is needed with no inference model

 ABP—AIlternating Back-Propagation

» Infer the latent variable directly from the true posterior distribution
»No extra parameters



Alternating Back-Propagation

* Define the generative model as:
z ~p(z) =N(0,1)
y = fo(x,z) +€,¢ ~N(0,3)
* The conditional distribution of y is defined as:

Do (ylx) = j p(Dpe(ylx, 2)dz

* Define the observed data log-likelihood as log(pg (v|x)), it’s gradient
is then:

0
00 log(pB (ylx)) IIng(zpc V) [ log(pB (y,zlx)



Alternating Back-Propagation

* The obser\éed data log-likelihood:
Y —log(pe (¥1%)) = Ep,(21x.9) [ log(pe (y,zlx)]

where the expectation term can be approximated with Langevin
dynamics based MCMC (a gradient based MCMC) to sample z from it’s
true posterior distribution via:

s°10
Ziy1 = Zp + > [E)zlogpe (v, Ztlx)] + sNV(0,1)

d 1 d
With: 37.08P0 (¥, 2 |X)=5 (v — Jo (X, 2)) 7 Jo (%, 2)~2

t : time step for Langevin sampling s :stepsize



* ABP for dense prediction

—B y
X

Langevin Dynamic
based MCMC

N(0,1)

Different from VAE or GAN that involves extra modules (inference model for VAE and discriminator for
GAN), ABP sample directly from the true posterior distribution via gradient based MCMC.



Energy-based model

e Latent variable model
> estimate the distribution of the latent variable
» Estimate the predictive distribution

* Energy-based model
» Estimate predictive distribution directly.



Energy-based model solution

 EBM: energy-based model, learns an energy function to assign low
energy to in-distribution samples and high energy for others.

* Energy-based model:
Py (¥, X) 1

| v, (v, x)dy ACR)

p, (y]x) = exp|—U, (¥, x)]

U, (y,x) :the energy function

Z(x;y) = fexp[—Uy(y, x)]dy : the normalizing constant

A tutorial on energy-based learning. Yann LeCun. 2006



Energy-based model solution

* Energy-based model:
Py (¥, X) 1

[p,(,0)dy  Z(x:7)

p, (y]x) = exp|—U, (¥, x)]

When the energy function U, is learned and input image x is given,

prediction can be achieved via Langevin sampling: y ~ p, (y|x):

0% U, (y, x)
2 dy

Yt+1 = YVt — + 04, A ~ N (0,1)

Cooperative Training of Descriptor and Generator Networks. Xie, Jianwen et. al. TPAMI. 2018



Energy-based model solution

* EBM: 1) start point of Langevin sampling, 2) train the energy function U,

Start point:
1) Any deterministic model fg(x)
2) Any latent variable model fg(x, 2)

Learn Uy : maximum likelihood estimation

=y UGG~y Uy



Outline
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v'Bayesian latent variable model solutions



Bayesian latent variable model solutions

* Bayesian Neural Network
e Latent variable model
Predictive distribution:

p(ylx) = j po (vlx, 2)p()p(2)d6dz

Uncertainty origin: (€, Z), z, p(8)
Regression Likelihood: 7—/

Classification Likelihood: Epistemic uncertainty

pe(¥lx, z) = Softmax(fy(x,z)/exp(c?))



Generative model based Uncertainty
computation—regression

e Aleatoric uncertainty U — = I H(ylx,0.),or U, = o(x 2
a = 7 Lt=11 t a

* Epistemic uncertainty

Ue = EpgD)[p(1x, 0)%] — (B, (g p) [P X, O)])?
or

1 1
U.=H (; {=1 p(ylx, Qt)) . ;ZZ=1 H(y|x, 0¢)

* Predictive uncertainty

U, = Uy + U,



Generative model based Uncertainty
computation--classification

e Aleatoric uncertainty
1
Ug = =311 Hy|%,8,), or Uy = 0(x)?

* Predictive uncertainty
T

1
Up =HGZ D px,00)

t=1

* Epistemic uncertainty

1
U, =H (‘ Z:1 p(ylx, Ht)) T Z=1 H(y|x, 0;)



Break
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Experiments--Uncertainty quality measure?

* Expected calibration error
» On Calibration of Modern Neural Networks. Chuan Guo et. al. ICML. 2017

e Patch accuracy vs patch uncertainty

» Evaluating Bayesian Deep Learning Methods for Semantic Segmentation.
Jishnu Mukhoti and Yarin Gal. Arxiv. 2018

* Evaluation on out-of-distribution samples



Experiments--Tasks

 Camouflaged object detection
e Salient object detection



COD

 Where is the camouflaged object




Camouflaged object detection

TABLE 1

Ensemble based solutions for camouflaged object detection. 1
indicates the higher the score the better, and vice versa for |.

TABLE 3

Generative model based solutions for camouflaged object detection.
1 indicates the higher the score the better, and vice versa for |.

Method CAMO [527] CHAMELEON | CODIOK [71] NC4K [54]
Fg1T M| | Fgt Ml Fgt MUl | FgT M|

Method CAMO [£7] CHAMELEON [%3] | CODIOK [71] NC4K [84] Base % b .079 .848 029 131 .035 .803 048
Fsgt ML | Fg? M Fst ML| Fgt M| CVAE 758 .081 .848 030 731 .034 .802 048

MD 767 080 842 028 731 035 803 048 ABP 756 .081 .846 030 129 .034 .801 047
DE 729 088 | .846 030 718 037 | 796 051 EBM 777 076 | 844 031 721 .038 | 796 .050

1. Base: the base model
2. MD: MC-dropout
3. DE: deep ensemble

1. Base: the base model
2. CVAE: the CVAE based framework

3. CGAN: the CGAN based framework
4. ABP: the ABP based framework

5. EBM: the EBM based framework



Predictive Uncertainty-Ensemble

Image Uncertainty



Predictive Uncertainty-Generative Model
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Aleatoric Uncertainty-Ensemble

Image Uncertainty Uncertainty Uncertainty



Aleatoric Uncertainty-Generative Model

Image Uncertainty Uncertainty



Image Uncertainty Uncertainty




Epistemic Uncertainty-Generative Model
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Three types of uncertainty

Image e Predictive Aleatoric Epistemic Pred Predictive Aleatoric Epistemic




Observations

* Aleatoric uncertainty focus on inherent noise, i.e. object boundaries

* Epistemic uncertainty highlight challenging pixels, representing our
ignorance about which model generated the given dataset.

* COD: aleatoric uncertainty vs epistemic uncertainty



SOD

e Which one is salient?




Salient object detection

TABLE 4
Generative model based solutions for salient object detection, 1

TABLE 2 indicates the higher the score the better, and vice versa for |.

Ensemble based solutions for salient object detection. 1 indicates the
higher the score the better, and vice versa for |.

Method DUTS [7Y] DUT [50] HKU-IS [%1] PASCAL [%2]

Fgt M| Fgt MU | Fgt M| | FgT M|

Method DUTS [75] DUT [79] HKU-IS [50] PASCAL [®1] Base 842 037 760 055 904 .030 .828 064
Fsgt MUL|Fst M| Fst ML|Fs1 ML CVAE | 836 037 | .748 055 | 901 .030 | 826 .063

Base 842 .037 .760 055 904 .030 .828 .064 CGAN .846 .035 732 054 905 .029 .828 063
MD .854 036 763 056 911 .028 .840 061 ABP 829 040 740 059 889 034 818 068
DE 828 040 138 061 .897 031 .825 065 EBM 834 .040 744 062 900 031 .829 064

1. Base: the base model

1. Base: the base model 2. CVAE: the CVAE based framework
2. MD: MC-dropout 3. CGAN: the CGAN based framework
3. DE: deep ensemble 4. ABP: the ABP based framework

5. EBM: the EBM based framework



Predictive Uncertainty-Ensemble

Image Uncertainty Uncertainty
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Aleatoric Uncertainty—Ensemb\e
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Aleatoric Uncertainty-Generative Model
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Epistemic Uncertainty-Ensemble

Image Uncertainty Uncertainty Uncertainty



Epistemic Uncertainty-Generative Model

Image Uncertainty Uncertainty Uncertainty



Three types of uncertainty

@nn

Predictive Aleatoric Epistemic Predictive Aleatoric Epistemic

MC-dropout CGAN



Observations

* Aleatoric uncertainty focus on inherent noise, i.e. object boundaries

* Epistemic uncertainty highlight challenging pixels, representing our
ignorance about which model generated the given dataset.

* SOD: aleatoric uncertainty vs epistemic uncertainty



Discussion

e Sampling-free uncertainty estimation

* Pixel-level uncertainty vs Instance-level uncertainty

* How to effectively use the produced uncertainty

* Model calibration and uncertainty estimation

* Out-of-distribution detection and uncertainty estimation
* Multi-modal/multi-task learning

* Semi-/weakly-supervised learning

e Effectiveness measure
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