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Abstract—Image complexity (IC) is an essential visual perception for human beings to understand an image. However, explicitly
evaluating the IC is challenging, and has long been overlooked since, on the one hand, the evaluation of IC is relatively subjective
due to its dependence on human perception, and on the other hand, the IC is semantic-dependent while real-world images are diverse.
To facilitate the research of IC assessment in this deep learning era, we built the first, to our best knowledge, large-scale IC dataset
with 9,600 well-annotated images. The images are of diverse areas such as abstract, paintings and real-world scenes, each of which is
elaborately annotated by 17 human contributors. Powered by this high-quality dataset, we further provide a base model to predict the IC
scores and estimate the complexity density maps in a weakly supervised way. The model is verified to be effective, and correlates well
with human perception (with the Pearson correlation coefficient being 0.949). Last but not the least, we have empirically validated that
the exploration of IC can provide auxiliary information and boost the performance of a wide range of computer vision tasks. The dataset
and source code can be found at https://github.com/tinglyfeng/IC9600.

Index Terms—Image complexity assessment, image attributes, large-scale well-annotated dataset.
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1 INTRODUCTION

THE image complexity (IC) is defined as the intricacy
contained within an image [1]. Objectively, IC can be

considered as the amount of detail and variety in an im-
age [2]. Subjectively, it is the degree of difficulty for a
human audience to understand or describe an image [2], [3]
regarding both global abstract and local details or textures.
For example, as shown in Fig. 1, the plain sketch and open
sky are in a lower IC, while the texture of architecture and
the crowd of people are in a higher IC relatively. The overall
IC of an image is impacted by the combination of such local
areas with different IC levels. IC is an important perception
in psychology, which can strongly influence the visual aes-
thetics [4], [5] and affective responses of viewers [6]. It is
also a common and significant attribute in computer vision.
An automatic prediction of IC has been proven helpful to
multiple applications such as image segmentation [7], image
steganography [8], webpage design [6], text detection [9],
image enhancement [10], etc. Therefore, it is necessary and
useful to explicitly evaluate the IC to mimic the human
perception and facilitate the follow-up tasks.

To achieve this goal, several previous works present
some heuristic metrics that can be leveraged for evaluating
the IC, e.g., image entropy [11], compression ratio between
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Fig. 1. Sample images of our IC9600 dataset in different cat-
egories, such as abstract, scene, architecture, etc. ‘S1’-‘S5’
denotes the distribution of complexity scores (1-5 point scale)
annotated by 17 annotators. The images are ranked by the
average scores (top on each image, normalized to [0, 1]).

the original image size and its size of compressed format
(e.g., JPEG, GIF) [12], density of edge pixels in the whole
image [13], count of the unique RGB colors in an image [14],
etc. Afterward, machine learning methods such as SVM,
random forest, and BP neural network [14], [15] are used
to leverage a variety of basic image features to predict the
IC. However, these algorithms are mainly based on small-
scale datasets and focus on hand-crafted features, hindering
their generalization capacity to evaluate the IC in practice.

The evaluation of IC is challenging due to the following
reasons: (1) Real-world images are varied in an almost
infinite number of patterns and scenarios, thus it is hard
to robustly represent their IC based on the combination of
hand-crafted features. (2) The IC is a kind of high-level

https://github.com/tinglyfeng/IC9600
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(subjective) concept relying on human perception, with a
wide gap to those low-level features. Recently, deep con-
volutional neural networks (CNNs) have shown powerful
representation and generalization ability to explicitly model
the subjective human perception (e.g., image aesthetic [16],
image quality [17], etc.) in a data-driven manner. However,
existing datasets of IC are all of small-scale with limited
diversity since constructing an IC dataset is hard and time-
consuming work (e.g., each image needs to be labeled by
enough annotators to reduce ambiguity). As shown in Tab.
1, those datasets are either small-scale, not publicly avail-
able, or limited to particular topics, which can hardly be
suitable to power the effective data-driven and deep-based
image analysis methods.

To facilitate the research of the IC in the deep learn-
ing era, we built a large-scale dataset termed IC9600 with
9, 600 images. Each image is annotated by 17 well-trained
contributors that are chosen through an elaborate com-
plexity perception test. As shown in Fig. 1, the proposed
dataset includes a variety of content categories, i.e., ab-
stract, advertisement, architecture, object, painting, person,
scene, and transportation. The most relevant dataset is the
SAVOIAS [18], while ours is built with a larger size, more
diverse and application-oriented categories, and a more
practical annotation solution under the scenario of a large
amount of samples. With such diverse topics, we aim to
support the training of deep and robust models, and provide
comprehensive auxiliary representations to boost a wide
range of related tasks.

Furthermore, based on the dataset, we propose a base
model, namely ICNet, to extract powerful representations of
IC and facilitate the other applications. ICNet is designed
with two branches, i.e., detail branch and context branch.
The detail branch utilizes a shallow convolutional network
to capture local representations from high-resolution im-
ages, while the context branch aims to excavate contextual
information from an image with a smaller size via a deeper
network. Then the informative features from two branches
are combined and sent to the following two heads, of
which one predicts an IC score that represents the overall
complexity of an image while another outputs an IC map
that depicts the local complexity intensity of the image.
Experimental results demonstrate the effectiveness of our
proposed method.

To further demonstrate the significance of IC in the com-
puter vision, we make great efforts to explore the relations
between the prior complexity knowledge and some specific
tasks (e.g., image aesthetic assessment [4], crowd count-
ing [19], salient object detection [20], etc.) to improve their
performance. Extensive experiments on multiple datasets
indicate that IC can provide auxiliary information and we
can effectively boost the performance of six sub-tasks by
applying the IC in proper ways.

Our contributions can be summarized as follows:

• We built currently the largest well-annotated IC dataset,
which addresses the urgent need of a large-scale
database for IC assessment. Our proposed dataset con-
tains 9, 600 images across 8 semantic categories. Each
sample is annotated by multiple people to reduce the
personal bias.

• We provide a baseline model to predict the image com-
plexity scores and estimate the complexity density map
of images in a weakly supervised manner. The model
is designed to have two separate branches to extract
detail and context features respectively. Moreover, we
propose a spatial layout attention module to further
improve the ICNet.

• We apply the proposed model to several computer
vision tasks, which gives a preliminary exploration for
the usage of IC in the deep learning era. Experiment
results demonstrate that IC can be used as a primary
image attribute to improve the performance of many
tasks in computer vision.

2 RELATED WORK

2.1 Image Complexity Analysis

Researchers have investigated the factors that influence the
human perception of IC in psychology [2], [21], [22]. Oliva et
al. [23] characterized the representation of IC as the number
of objects, openness, clutter, symmetry, organization, and
variety of colors. Forsythe [1] argued that familiarity is an
important factor that influences the perception of IC, e.g.,
observers tend to rate familiar shapes as less complex than
they actually are. Purchase et al. [24] conducted an empirical
study to investigate whether the IC could be quantified
and if it could match participants’ views of complexity. The
study shows that it is challenging to define an explicit metric
that adequately captures the human perception of IC.

Many algorithms have been developed to assess image
complexity automatically [11], [25]. Some of them try to
quantize IC with entropy. Stamps [21] investigated the
relationship between the IC and the stimulus feature of
entropy and finds the correlation between them is strong
and linear. Based on the relation between image clutter
and visual information, Rosenholtz et al. [26] proposed
feature congestion and subband entropy to evaluate the
IC. Machado et al. [12] claimed that simple images tend to
have more redundant information while values of pixels in
complex images are less predictable. In other words, simple
images can normally be compacted to a smaller size, thus
introducing compression ratio to describe the IC is practi-
cable. Even though entropy is proven to correlate with IC,
they can only roughly evaluate the amount of information
an image carries. More specific descriptors (i.e., hand-crafted
features) will be needed to assess IC more precisely. In
[27], the main factors affecting human visual perception
are defined as the distribution of compositions, colors, and
contents. Thus they designed 29 local, global, and salient
region features to represent the above three factors. Apart
from these, edge density [12], spatial information [28], visual
attention [25], etc., are also used as common metrics for
calculating IC. Further, several machine learning methods
have been leveraged to combine hand-crafted features to
model the IC. For example, Sun et al. [4] adopted gradient
boosted trees to regress the complexity features of compo-
sition, statistics, and distribution. Chen et al. [15] used the
backpropagation neural network to establish the relation
between IC and three features, i.e., texture, edge, and region.
Recently, Abdelwahab et al. [29] extracted features using a
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pre-trained CNN and then use SVM to predict the com-
plexity level. Similarly, Saraee et al. [18] proposed to predict
image complexity with Ridge regression where the input
image representations are extracted from pre-trained CNNs.
Moreover, in the same work, an unsupervised activation
energy (UAE) method is also developed to model image
complexity based on the activations from the intermediate
layer of deep neural networks.

Even though various methods have been proposed to
investigate the IC, most of these methods are based on hand-
crafted features and traditional machine learning methods.
A few recent methods employ the off-the-shelf pre-trained
CNNs to extract image features, but do not train them in
an end-to-end manner due to the lack of large-scale paired
training data. Therefore, these methods can hardly correlate
well with the high-level perception of IC. Moreover, due to
the lack of benchmark datasets, most existing works conduct
experiments and demonstrate performance on individual
datasets that are constructed by themselves. As a result, the
comparison might be biased. These datasets are of small-
scale or have subjective bias (i.e., each sample is anno-
tated by limited observers), which may not get convincing
conclusions. Therefore, a large-scale and high-quality IC
benchmark is urgently needed for fair comparisons and to
boost the development of IC assessment.

2.2 Subjective Visual Attributes Assessment

Image complexity, as well as many other image attributes,
e.g., image quality [34] and image aesthetic [35], is a sub-
jective concept which varies from person to person. Here,
we mainly investigate the successes of image quality as-
sessment (IQA) and image aesthetic assessment (IAA) tasks
since they have the most similarity to the IC assessment.

To obtain labels with low personal bias for subjective
visual attributes, averaging the perception from multiple
humans is verified to be currently a great practice in the
area of IQA and IAA. Ponomarenko et al. [36] proposed
a widely used IQA dataset named TID2008. The mean
opinion scores (MOS) indicating image quality are collected
from 256k individual human quality judgments. The re-
cently proposed KADID-10k dataset [37] consists of more
images and distortion types, and each image receives 30
degradation category ratings by crowdsourcing. For the IAA
task, CUHK-PQ [38] is the earlier large-scale IAA dataset.
Each image is annotated by ten viewers and is assigned
a binary label that indicates high image aesthetic or not.
Following this work, AVA [39] built by Murray et al. is
currently the largest IAA dataset, in which each image is
voted with scores from 1 to 10 by multiple people. Driven
by these proposed datasets and supervisions of average
human perception, many CNN-based models have been
proposed to accurately assess the image quality or aesthetic.
For example, Kang et al. [40] proposed a network consisting
of one convolutional layer, two fully-connected layers, and
one output node. This model is proved to be more effective
for IQA than the traditional methods based on handcraft
features. Bianco et al. [41] proposed the DeepBIQ model that
predicts sub-regions scores and then averages them to esti-
mate the image quality. Considering that the shape transfor-
mation such as resizing, cropping, or padding may damage
the image aesthetic, Mai et al. [42] introduced a composition-

Fig. 2. Several sample pairs of our perception test. The two
images in each pair are manually set to be in different IC levels.
The candidates are asked to choose the more complex image
in each pair.

preserving network that can directly process input images
with original size and extract multi-scale features at the
same time. Zhang et al. [43] introduced a gated peripheral-
foveal CNN to mimic the human perception mechanism of
aesthetic. This model can encode both the holistic informa-
tion and fine-grained features.Besides, image cropping [44],
group maximum differentiation competition [45], [46], and
self-supervised feature learning [47] are also verified to be
effective approaches for IAA or IQA. Following the existing
successful experiences of IQA and IAA, we build the IC9600
benchmark dataset and propose a CNN-based model to
facilitate the research of IC assessment.

2.3 Image Complexity Datasets

As shown in Tab. 1, several small datasets have been used
for IC analysis. Specifically, Oliva et al. [23] collected 100
pictures of indoor scenes, and then annotate them by a
three-times dichotomy (splitting each group into simple
and complex groups). Iliyasu et al. [30] built the Corel
1000A dataset, in which images are annotated into three
categories (i.e., simple, normal, and complex). To study the
automatic complexity metrics of graphical user interfaces
(GUI), Miniukovich et al. [31] gathered screenshots of 140
webpages, and then ten graduate students are asked to rate
the complexity on a 1-5 point scale. Afterward, Corchs et
al. [32] collected 98 images of scenes and 122 real texture
images to predict the complexity perception of real-world
images. Recently, to identify factors that affect the IC per-
ception of paintings, Fan et al. [33] constructed a complexity
dataset containing 40 Chinese ink paintings. Guo et al. [14]
collected 500 painting images with a 1-7 point scale. Further,
Saraee et al. [18] created a dataset SAVOIAS with over 1, 000
images and unbiased ground truth labels for the IC analysis.

The SAVOIAS is the most similar to ours but our dataset
is built with the following key significance. First, the size
of our dataset is nearly 7 times larger than the SAVOIAS.
Second, our dataset covers more diverse topics (8 versus
7) and these topics are more dedicated to real-world ap-
plications. Third, the annotations of our dataset cross the
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TABLE 1
Overview of the current datasets for image complexity assessment. The acronym in line7 and line8 represent Abstract(Abs),

Advertisement(Adv), Architecture(Arc), Art(Art), Id(Interior design), Obj(Object), Pai(Painting), Per(person), Sce(Scene),
Sup(Suprematism), Tra(Transportation), Vi(Visualization and infographics).

# Datasets Year Size Image Type Annotation Type Public Available
1 Oliva et al. [23] 2004 100 Indoor scenes 1-8 point scale No
2 Corel 1000A [30] 2013 1,000 Objects Three categories No
3 Miniukovich et al. [31] 2014 140 Webpages 1-5 point scale No
4 Corchs et al. [32] 2016 220 Real-world scenes (98), real texture (122) 0-100 score No
5 Fan et al. [33] 2017 40 Chinese ink painting 1-7 point scale No
6 Guo et al. [14] 2018 500 Painting images 1-7 point scale No
7 SAVOIAS [18] 2020 1,420 Adv, Art, Id, Obj, Sce, Sup, Vi Pair-wise comparison Yes
8 IC9600 (Ours) 2021 9,600 Abs, Adv, Arc, Obj, Pai, Per, Sce, Tra 1-5 point scale Yes

whole dataset regardless of semantic categories while the
ground truth scores in SAVOIAS are only comparable within
the same category, which limits its further applications in
general image complexity analysis. Note that the existing
complexity-related datasets are all of small sizes and most
of them are unavailable to the public. Therefore, it is nec-
essary to build a large-scale dataset with diverse real-world
scenarios to address the urgent need from the deep learning
for the assessment of IC.

3 PROPOSED DATASET

3.1 Image Collection
• Image Resources. Our dataset contains eight cate-
gories including abstract, advertisement, architecture, ob-
ject, painting, person, scene, and transportation. To build
such a diverse dataset, we initially collect images for each
category from several popular datasets. Specifically, we
select abstract and architecture images from AVA [39],
advertisement images from Image and Video Advertise-
ments [48], object images from MS-COCO [49], painting
images from JenAesthetics [35], person images from Wider-
Person [50], scene images from Places365 [51], and trans-
portation images from BDD100K [52].

• Sampling Strategy. To further improve the diversity of
each semantic category, we choose images from each dataset
to contain sub-categories as many as possible. For example,
the Places365 [51] dataset contains 365 scenario categories.
We randomly select 4 images from each scene category and
get a total of 1, 460 images for the scene category. The
sampling strategies of other categories are similar to this.
After the sampling process, we get around 1, 500 images for
each of the eight categories.

• Removal of inappropriate images. Note some images
sampled from different datasets are identical copies or near-
duplicate. Thus we remove the near-duplicates using the
Image Deduplicator1 tool. Then we filter out the images that
have too many watermarks or are of low quality. After a
multi-round checking and selection, we finally get a total of
9, 600 images.

3.2 Image Annotation
• Annotation Guidance and Test Questions. To ensure
the quality of annotations, we elaborately select, train, and
test the annotators as follows. First, we select all the can-
didates from vision-related university laboratories. Second,
we train them with a detailed tutorial including the purpose

1. https://github.com/idealo/imagededup

TABLE 2
The averaged PCC of each pair of groups with different

settings. The equation M×N+K (1st row) means we split the
17 annotations into N +1 groups, of which N groups contain M
annotations for each and 1 group contains K annotations. The
annotations in each group are averaged into one annotation.

For the N + 1 groups, we compute PCC for all the C2
N+1 pairs.

And the 2nd row is the mean value of the C2
N+1 PCCs.

Groups 1×17 2×7+3 3×4+5 4×3+5 5×2+7 8×1+9
PCC 0.54 0.68 0.77 0.82 0.86 0.94

of the study and the basic concept of IC. Third, to verify
their abilities to distinguish different IC levels, we conduct
a test consisting of a number of pairs of artificial images that
are simulated with simple geometries (e.g., triangle, square,
and circle). Samples of these test pairs are shown in Fig.
2. The two images in each pair are manually set to be in
different complexity levels based on the IC factors including
texture, shape, object arrangement, etc. We finally get 20
qualified annotators with top performance in the test (all of
them scoring at 90%+ accuracy). To guarantee the ability of
annotators to distinguish multiple levels of IC, we carefully
choose images in 5 complexity levels (i.e., very simple, sim-
ple, medium, complex, and very complex) for each category
according to the basic attributes of IC. We select 5 images for
each complexity level. The annotators are asked to observe
the difference between multiple complexity levels and take
them as references when they annotate the images.

•Annotation Environment. Each annotator is asked to be
in a quiet room without any interference from other people.
They are required to pay attention to the annotation task
and make their phones mute.

•Annotating. Following [4], [16], we ask each participant
to annotate each image by using 1-5 point scales, with the
complexity degrees ranging from very simple (i.e., 1) to
very complex (i.e., 5). Each annotator should annotate 320
images in one day, which needs a total of 30 days. And
they should observe an image for more than 10 seconds
to have an accurate perception of the image. If they feel
tired, they should stop the annotation and have a break.
Besides, each time before their annotating, they are asked
to review the guidance of the IC concept and multiple IC
levels. Note that the pairwise comparison method applied
in SAVOIAS dataset [18] is not suitable for our dataset since:
(1) Unlike SAVOIAS (separately labels around 200 images
for each category), our dataset is much larger (9, 600 im-
ages). Therefore, the workload of pair-wise comparison for
each annotator will exponentially increase, which is beyond
the limits of our capability. (2) The multi-point Likert scale
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is verified to be reliable in many previous works related
to the evaluation of subjective image attributes like image
quality assessment [34] and image aesthetic assessment [16].
Additionally, the subjective bias from the multi-point Likert
scale can be well reduced by the averaging strategy.

• Outliers. Following the previous work [53], annotators
who have a very low agreement with other annotators are
outliers. Specifically, for each annotator, we compute his
average Pearson correlation coefficient (PCC) with other
annotators. Finally, 3 annotators whose average Pearson
correlation coefficient is lower than 0.4 are removed as
outliers, and 17 annotations are used to calculate the final
complexity score.

• Subjectivity Removal. We leverage the widely-used
average strategy to reduce the subjectivity of annotators.
Specifically, after annotating, the label set corresponding
to the j-th sample can be denoted as {y1j , y2j , y3j , · · · ymj },
where yij ∈ {1, 2, 3, 4, 5} and m is the total number of
labels assigned to j-th image. The final complexity score lj is
acquired by averaging the m labels and is then normalized
to [0, 1], i.e., lj =

∑m
i=1(y

i
j − 1)/4m. The final score acquired

from the averaging strategy can effectively eliminate the
bias caused by subjectivity. To verify it, we split the 17
annotations into several groups, and then compute the PCC
(It is the ratio between the covariance of two variables and
the product of their standard deviations, the formula can be
found at 6) between each pair of groups. As shown in Tab.
2, with the number of annotations in each group increasing,
the PCC is improved as well. And when we divide all
the annotations into two groups, the PCC of them reaches
0.940. This phenomenon proves that the subjectivity can
be reduced by averaging annotations from more observers.
In addition to this calculated complexity score, we will
also provide the label distribution of each sample for the
community to research more characteristics of IC.

3.3 Properties of Dataset
• Human Rating Consistency. The perception of visual
attributes, e.g., IC, might be different across people due
to the subjective nature of human perception, yet will be
stable under a distribution of multiple trials. Here, we make
an attempt to demonstrate the reliability of the subjective
annotation of multiple annotators. Following the common
standards [54], [55], we leverage the Pearson correlation co-
efficient, Spearman’s correlation coefficients, and Kendall’s
tau correlation between each pair of annotations, and eval-
uate their statistical significance of the correlation with re-
spect to a null hypothesis of uncorrelated responses. Results
show that the average PCC, Spearman’s correlation coeffi-
cient (SRCC), and Kendall’s tau correlation are 0.54, 0.53,
and 0.48, and at a significance of 0.01, the p-value is less
than 0.01 for all pairs, which demonstrates the consistency
between annotators. Besides, similar to the crowdsourcing
assessment studies for image quality assessment and image
aesthetic assessment [53], [56], we calculate the intra-class
correlation coefficient (ICC) of our annotation. ICC is the
most widely used indicator to measure the inter-rater relia-
bility. A high ICC shows that most variance originates from
differences in the images, but not by individual differences
in the evaluations by the annotators, thus indicating a high

Fig. 3. The distribution of annotations of the proposed IC9600
dataset. We equally divide the scores from 0 to 1 into five
intervals and compute the ratio of the scores lying within these
intervals for each category (three-letter acronym). The distribu-
tion is shown in the above-stacked bars with the corresponding
mean score and total number below. The same information of
the overall dataset is also shown in the last row.

degree of consistency among annotators. We use the same
one way random model of ICC as the [53], [56]. Experiment
shows the ICC is 0.518, which is better than the results
of [53] (0.46) and [56] (0.403). It also demonstrates the
reliability and consistency of our annotation.
• Distribution of Annotations. All images are randomly
divided into a training and a testing set in a ratio of 0.7 : 0.3.
For each of the eight semantic categories, the score distri-
bution is shown in Fig. 3. The category distribution of our
dataset is relatively balanced since each category contains
∼1, 200 images. However, the distribution of complexity in
different semantic categories varies from each other. For the
abstract category, the number of scores below 0.2 is larger
than any other category, which results in a minimum mean
score. It is reasonable because the contents of the abstract
image are mostly simple geometries. Note that images in the
person category are derived from WiderPerson [50], which
is a dense pedestrians dataset. The people in the pictures
are presented in a crowded and disordered manner, making
the pictures very complicated. Thus, the mean score of the
person category is much higher than others and none of
the scores are lower than 0.4. This explanation can also
be adapted to the high scores of the transportation cate-
gory. As shown in the last row of Fig. 3, we can see that
nearly half of the images are assigned to medium scores
(i.e., [0.4, 0.6)), and the whole dataset presents a symmetric
Gaussian distribution centered at around 0.5, which reflects
the IC distribution in the real world. Additionally, we calcu-
late the mean and variance of annotations for each sample
and split them into five intervals according to their mean
values. The variance distributions of each split area are
shown in the boxplot of Fig. 4. We can observe that the
samples with the complexity score between 0.8 and 1.0 have
relatively higher variances, which indicates that IC in this
area may be slightly harder for human beings to explicitly
distinguish. Nevertheless, most of the variances are lower
than 0.04, which proves the high annotation consistency
of our dataset. We hope such a diverse dataset can help
researchers explore more general IC attributes of images and
more broad applications of IC in various computer vision
tasks.
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Fig. 4. Distribution of variances. All the samples are split into five
intervals according to their mean values. To make the boxplot
clearer, the few outliers are omitted.

4 PREDICTING IMAGE COMPLEXITY

In order to set a baseline for the following research and
verify the reasonability of the proposed dataset, we design
a base model, namely ICNet, in this paper. As shown in Fig.
5, ICNet consists of two branches for feature extraction. The
detail branch captures spatial and detailed feature repre-
sentations while the global branch encodes the context and
high-level information. The two kinds of features are then
concatenated and sent to the following two heads for IC
map and IC score predictions respectively. Moreover, each
intermediate feature is refined by a spatial layout attention
module (SLAM) that is specifically designed for IC feature
scaling, and thus generates more effective representations.
We will detail the ICNet next.

4.1 Two-Branch Extractor

The IC is a basic image attribute that depends on both
the low-level representations and the high-level semantic
information in the whole image. It indicates that the de-
signed model is expected to have the ability to excavate the
two kinds of essential features from an image at the same
time. Given a deep convolutional neural network (DCNN),
Zeiler et al. [58] project the activations of features back to
the pixels of the input image. They visually demonstrate
that the features from shallow layers of DCNN are normally
activated by simple patterns like edges, corners, angles, etc.
In contrast, the responses of deeper layers are basically
determined by more abstract semantic information like a
dog’s face. Based on the empirical phenomenon of DCNN,
we propose a two-branch network for feature extraction.

Both the two branches of our model are modified from a
ResNet18 [57]. More specifically, we separate the ResNet18
into four stages. The first stage downsamples the image
to 1/4 resolution feature maps and the downsampling fac-
tors of the following three stages are 1/8, 1/16 and 1/32
respectively. Both the adaptive average pooling and fully-
connected layer at the end of ResNet18 are dropped. Note
that all the stages are pre-trained on ImageNet [59] dataset,
the initial model has a strong ability to capture general
image features. As for the context branch, it comprises all
four stages. The image fed into it is of low resolution (i.e.,
256 × 256). In this way, this head with deep layers yields a
relatively large reception field compared to the small input
size. Thus it can encode the context and high-level abstract

feature representations. In contrast, the detail branch aims
to capture detailed spatial information, thus it borrows only
the first two stages of ResNet18 and accepts an image with
a large size (i.e.,512 × 512). The downsampling factor of
this branch is only 1/8, which can produce high-resolution
feature maps with the size of 64× 64.

To combine the two feature maps generated from each
branch, we adopt a concatenation operation on the channel
dimension. Note that the spatial dimensions of the two
concatenated maps need to be identical, which implies that
we should either upsample the maps from the context
branch or downsample the maps from the detail branch.
In this case, the spatial information encoded in the detail
features is shown to be an important factor of IC in the
following sections. Thus we upsample the context maps and
concatenate them to fully utilized both the low-level and
high-level features while preserving the spatial details.

4.2 Spatial Layout Attention Module

In general, images with more textures, edges, items, etc.,
are deemed more complicated. Thus a common practice is
averaging the extracted features to a vector and sending it
to the multi-layer perceptron (MLP) followed by a sigmoid
function at the end to predict the complexity score. In this
way, the vector only encodes the average intensity of each
feature in the image. It loses the essential factor, i.e., the
spatial layout of features, that largely determines IC. As
shown in Fig. 6, the two images with ground truth scores
shown below are picked from the abstract category in our
dataset. It is obvious that the right image has more colors
and lines, but the left image is annotated with a higher IC
score. The main difference between the two images is the
spatial layout of image elements, which makes the percep-
tion difference of IC. More specifically, the image on the left
is formed with winding and disordered lines while which
on the right image are uniform and consistent. Therefore,
the annotators tend to give a higher score to the left image.

Inspired by the above observation, we propose an at-
tention module that can adaptively scale the activation in-
tensity by excavating the spatial layout information, termed
spatial layout attention module (SLAM). As shown in Fig. 5,
given a feature maps F ∈ RC×H×W, we first flatten it along
the spatial dimension into a 2-D map Ffl ∈ RC×(HW). For
any single channel of index i, the vector F i

fl ∈ RHW encodes
the activations of the feature embedded in ith channel at
each spatial location. To learn the way of how the layout of
features affects the IC, we send Ffl to a MLP, resulting in
a vector s ∈ RC. This operation is independent of channel
dimension, which means for an index of channel dimension
i, the input is F i

fl, and the output is a scalar si. The MLP
layer consists of two linear layers, each of which is followed
by an activation function, which can be denoted as:

si = σ1(W1 × σ0(W0 × F i
fl + b0) + b1), (1)

where the σ0 and σ1 are ReLU and sigmoid respectively,
W0 ∈ R(HW)×512 and W1 ∈ R512×1 are the weights of the
two linear layers, of which b0 ∈ R512 and b1 ∈ R1 are the
biases. Since the spatial layout is independent of different
features, thus the weights and biases of the MLP are shared
through the channel dimension.
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Fig. 5. Pipeline of our proposed ICNet. The model consists of a shallow and a deep extractor modified from a ResNet18 [57]. The
”CS(N)” on the arrow stands for Nth convolutional stage of ResNet18. The detail branch captures spatial and low-level features
from high-resolution image, while the context branch fed a smaller image extracts context and high-level representations. The two
kinds of features are then concatenated and sent to the following two heads for map prediction and score prediction. Besides, the
feature maps with an orange arrow behind them are refined by our proposed spatial layout attention module (SLAM), which can
help to scale features according to their spatial layout and produce more effective representations for IC assessment.

0.573 0.397

Fig. 6. Two images picked from the abstract category of our
dataset. The number under each image is the ground truth
complexity score. Even though the image on the right contains
more colors and lines, the left image is annotated with a higher
score, due to the irregular and disordered layout of lines in it.

Through (1), the MLP has the flexibility of evaluating
how much the spatial layout of i-th feature in F affects
the IC, i.e., si. If the layout of this feature is regular and
uniform, then we should suppress this feature. In contrast,
the feature should be amplified when of which the layout
is disordered and messy. To satisfy this requirement, we
expand s on the spatial dimension to the same size of F ,
resulting in S. Then a simple element-wise multiplication is
operated on the two 3-D tensors to produce the final output
O. The overall operations of our proposed SLAM can be
denoted as:

O = F · o3(o2(o1(F ))), (2)

where o1, o2, and o3 denote flattening, MLP, and expanding
operators respectively.

We add the SLAM behind the feature maps followed by
an orange arrow shown in Fig. 5. Note that we downsample

the feature maps whose size is of above 32 × 32 to 32 × 32
to reduce the computation cost.

4.3 Predicting Complexity Score and Map

In this paper, we explore two types of IC modalities. One
is the IC score that describes the overall complexity of the
whole image while another is a complexity map depicting
the complexity intensity of the local area.

To produce the two kinds of IC modalities, we send the
concatenated feature maps to the following two heads, i.e.,
the map prediction head and the score prediction head. In
order to fuse and balance features in different levels, we set a
Conv-BN-ReLU block in the entrance of both the two heads.
Afterward, a SLAM is employed to scale feature in each
channel according to its spatial layout. To predict the global
IC score S1, the feature maps refined by SLAM are then sent
to a global average pooling layer, yielding a feature vector as
the input of the following MLP layer and sigmoid function.

For the map prediction head, feature maps from SLAM
are followed by a 1× 1 convolution and a sigmoid function
behind, which projects them to a single-channel map, or
in another word, the complexity map. However, a problem
arises here, i.e., similar to the segmentation tasks, a ground
truth IC map is needed to evaluate the pixel-level regression
loss for backpropagation. But it is hard to annotate such an
IC intensity map. To overcome this dilemma, we propose
a simple weakly-supervised method by learning the com-
plexity map from only the ground truth IC score Sgt. We
average the generated complexity map to a scalar S2 and
then calculate the distance between it and Sgt. This way, this
head can implicitly learn to predict the local IC intensity so
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TABLE 3
Comparison with 10 traditional methods and 4 deep-based

methods (we train and test them on our proposed dataset). ↑
(↓) represents the larger or smaller is better, respectively. The

methods with superscript U denote that they are unsupervised
methods. The ’N’ in the table means that this metric is not

applicable to the UAE method.

Methods Metrics
PCC ↑ SRCC ↑ RMSE ↓ RMAE ↓

Tr
ad

it
io

na
l

ICU [60] -0.006 0.053 0.343 0.552
CRU [12] 0.228 0.314 0.196 0.405
FCU [32] 0.459 0.439 0.342 0.558
ENU [32] 0.479 0.458 0.385 0.600
SEU [32] 0.534 0.498 0.136 0.327
NRU [32] 0.556 0.541 0.188 0.394
EDU [14] 0.569 0.491 0.226 0.427
ARU [61] 0.571 0.481 0.234 0.445
HOG+SVR [62] 0.689 0.689 0.118 0.299
SIFT+SVR [63] 0.885 0.861 0.069 0.242

D
ee

p-
ba

se
d

UAEU [18] 0.651 0.635 N N
SAE [18] 0.865 0.860 0.074 0.240
AlexNet [59] 0.924 0.920 0.064 0.222
ResNet18 [57] 0.935 0.928 0.061 0.222
HyperIQA [17] 0.935 0.935 0.067 0.229
P2P-FM [55] 0.940 0.936 0.056 0.208
ICNet (Ours) 0.949 0.945 0.053 0.205

as to minimize the distance between the average prediction
and the ground truth.

During training, we optimize the distance between the
predicted score and ground truth, which is calculated by
the mean square error (MSE) loss:

L1 =
1

N

N∑
j=1

(S1 − Sgt)
2, (3)

L2 =
1

N

N∑
j=1

(S2 − Sgt)
2, (4)

where N is the total number of samples in a batch, and the
overall loss is computed from L1 and L2:

L = λ× L1 + (1− λ)× L2, (5)
where λ controls the weight of the two-part losses.

5 EXPERIMENTS AND RESULTS

5.1 Experimental Settings

• Implementation Details. We implement the proposed
model based on the PyTorch [64] framework using two
NVIDIA GTX 1080TI GPUS. We use the pre-trained model
on the ImageNet [59] dataset to initialize the parameters
of each stage of the two-branch extractor. The mini-batch
(batch size is 64) stochastic gradient descent (SGD) is used
to optimize the model. The momentum is set to 0.9 and
the weight decay is 0.001. We set the initial learning rate
to 0.05 and divide it by 5 every 10 epochs. The overall
training time is about 1 hour for 30 epochs. The model
is trained using the default training-test split as proposed
above. All the training images are augmented by random
horizontal flipping. Besides, we set λ to 0.9 to get balanced
performance between the two IC modalities. As for the
evaluation, we use the S1 as the final score prediction.

• Evaluation Metrics. We use Pearson correlation co-
efficient (PCC) [32], Spearman’s correlation coefficient

(SRCC) [16], root mean square error (RMSE), and root mean
absolute error (RMAE) to evaluate the methods.

PCC is defined as:

ρ(X,Y ) =
E [(X − µX) (Y − µY )]√∑N

i=1 (Xi − µX)
2
√∑N

i=1 (Yi − µY )
2
, (6)

where X and Y represent the predicted scores and the
corresponding ground truth subjective scores. µX and µY

are the mean of X and Y . N is the total image number.
SRCC is computed from:

ρ′ = 1− 6

∑N
i=1 (ri − r′i)

2

N3 −N
, (7)

where ri and r′i represent the rank of the i-th item when
predicted scores and ground truth scores are sorted in
descending order. Besides, RMSE is calculated by:

r(X,Y ) =

√√√√ 1

N

N∑
i=1

(Xi − Yi)2, (8)

and RMAE is represented by:

m(X,Y ) =

√√√√ 1

N

N∑
i=1

|Xi − Yi|. (9)

• Contenders. We compare the proposed method with
several traditional methods and deep-based methods. Tra-
ditional methods include image colorfulness (IC) [60], com-
pression ratio (CR, JPEG format) [12], feature congestion
(FC) [32], entropy(EN) [32], subband entropy (SE) [32],
number of regions (NR) [32], edge density (ED) [14], auto-
regressive model (AR) [61], support vector regression with
histogram of orientated gradients (HOG+SVR) [62], [65],
and support vector regression with scale-invariant feature
transform (SIFT+SVR) [63]. Deep methods contain the clas-
sic models (i.e., AlexNet [59] and ResNet18 [57]). Besides, we
compare with two other methods (i.e., HyperIQA [17] and
P2P-FM [55]) used for image quality assessment. Further,
the methods proposed in [18] that are specifically designed
for IC assessment based on CNNs are also added to our
comparisons, including the Unsupervised Activation En-
ergy (UAE) method and the Supervised Activation Energy
(SAE) method. The UAE method averages the feature maps
from the intermediate activation layer (e.g., ReLU) of pre-
trained models to a single activation score representing the
complexity of an image. Since the averaged activation can
only represent relative scores within images in the same
category, only the PCC and SRCC are employed to evaluate
this method. Similarly, the SAE method also first extracts
features from intermediate layers of pre-trained CNNs,
where the difference is that these features are then sent to a
Ridge regression model and trained with the supervision of
ground truth complexity scores. Besides, according to [18],
the VggNet yields the best performance compared with
other architectures such as ResNet, DenseNet, EfficientNet,
etc. Therefore, our reproduced experiments are conducted
on VggNet. Since [18] does not provide the details of which
layer they use for features extractions, we report our results
by choosing features that produce the best performances.
We train and test these methods on our proposed dataset
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TABLE 4
Comparison with 10 traditional methods and 4 deep-based

methods (we train them on our proposed dataset and test on
the small-scale SAVOIAS dataset [18]).

Methods Metrics
PCC ↑ SRCC ↑ RMSE ↓ RMAE ↓

Tr
ad

it
io

na
l

ICU [32] 0.230 0.243 0.290 0.485
CRU [12] 0.271 0.305 0.257 0.452
FCU [32] 0.430 0.456 0.259 0.454
ENU [32] 0.448 0.466 0.375 0.567
SEU [32] 0.352 0.345 0.261 0.454
NRU [32] 0.580 0.595 0.244 0.438
EDU [14] 0.467 0.449 0.273 0.460
ARU [61] 0.497 0.485 0.261 0.454
HOG+SVR [62] 0.380 0.350 0.253 0.447
SIFT+SVR [63] 0.704 0.695 0.185 0.382

D
ee

p-
ba

se
d

UAEU [18] 0.763 0.763 N N
SAE [18] 0.750 0.750 0.189 0.394
AlexNet [59] 0.819 0.818 0.183 0.387
ResNet18 [57] 0.843 0.845 0.177 0.380
HyperIQA [17] 0.826 0.831 0.184 0.390
P2P-FM [55] 0.836 0.842 0.179 0.383
ICNet (Ours) 0.866 0.868 0.176 0.379

using the default training-test split. For algorithms without
released codes, we reproduce the codes according to their
papers.

5.2 Quantitative Results

We show the evaluation results of different methods in Tab.
3. From this table, we can draw the following conclusions.
First, previous methods based on hand-crafted features can
hardly outperform those deep-based methods. Most of them
have a low PCC under 0.6 while deep methods are all
over 0.9. We can observe the PCC of IC in the first row
of Tab. 3 is very close to 0, revealing that the change of
colors in an image may not be a crucial factor of image
complexity. Other methods like CR, FC, NR, etc., are shown
to have better correlations with complexity. Note that each
of them is only from a single component view of IC, they
can be used to assess IC in a specific perspective, but are not
comprehensive metrics to thoroughly measure this abstract
concept. Among these traditional methods, handcrafted fea-
ture of SIFT with a support vector regression yields the best
performance. It indicates that SIFT with the ability to extract
a wide range of spatial features at different scales correlates
well with IC, but being only a local feature descriptor limits
its further performance. Second, with the support of our
large-scale and high-quality dataset, CNNs can extract high-
level representations that model the human perception of
IC better than low-level features. This fact has been proved
by the high performance of deep-based methods shown in
Tab. 3. Even the vanilla DCNNs simply modified from a
classification network (i.e., AlexNet and ResNet) outperform
the traditional methods by a big margin.

Third, our model exceeds all compared methods in terms
of the four metrics, which proves the superiority of ICNet.
The HyperIQA and P2P-FM perform worse than our pro-
posed method, because these methods specifically designed
for image quality assessment overlook some factors, e.g.,
detail and context information, that influence the human
perception of IC. The proposed ICNet can avoid this prob-
lem and model IC from the views of both detail and context,
thus achieving favorable results. Note that while both the

UAE and SAE methods show significant performance gaps
from our method, the results are quite reasonable. First,
the UAE method does not employ any human assessment
but purely relies on the assumption that the activations
of complexity areas are normally higher. Even though this
hypothesis may be partially correct, the produced IC scores
are averaged from whole activation maps that do not take
the elements layout of an image into consideration, which is
critical for IC assessment proved by the experiments of our
paper, thus can not excavate high-level IC factors. For the
SAE method, due to the lack of training data in SAVOIAS
dataset [18], the authors only employ pre-trained DCNN
for feature extractions and linear Ridge regression for score
predictions, where the DCNN is fixed in the whole process,
which limits its potential learning abilities.

Note that for comparisons within unsupervised methods
or between them and supervised methods, the PCC and
SRCC evaluating relative IC activations are more repre-
sentative than RMAE and RMSE due to dissimilar IC in-
tensity calibrations for different methods. Nevertheless, for
PCC and SRCC we can observe from Tab. 3 that unsuper-
vised methods are normally inferior to supervised methods,
which makes sense since the methods supervised by our
large-scale and well-annotated dataset are given the huge
advantages of progressively learning to capture more broad
IC factors, which are more effective and complete than those
relying on partial and pre-defined features from limited
perspectives, thus yield favorable performances.

Besides, to verify the powerful generalization ability of
our model, we also provide the results of different meth-
ods on the recent SAVOIAS [18] dataset in Tab. 4. Note
this dataset is small-scale and the ground truth scores are
separately annotated for each category (with a total of seven
categories). Thus, we train each method on all the samples of
our dataset, test them on the SAVOIAS, and report the mean
results of seven categories. Results show that the proposed
ICNet can also exceed the compared methods, which proves
the significant generalization ability of our model.

We also provide the results of our ICNet evaluated on
each semantic category in our proposed dataset, as shown
in Fig. 7. We can observe that the performance of abstract
category is relatively lower on each metric. We conjecture
that it may come from the wide variety of content in abstract
images, which makes it hard for the model to predict consis-
tent results. Besides, SRCC of Person is obviously the lowest
among the eight categories, while in terms of RMSE and
RMAE, its performance is relatively better. It is reasonable
since the complexity distribution of Person presented in Fig.
3 are mostly on a high complexity interval, i.e., [0.6, 0.8).
Hence it will be easier to predict a concrete score, but
explicitly predicting the complexity rank of each image is
more difficult than other categories, resulting in the lowest
SRCC. On the contrary, the distribution of Painting images
in Fig. 3 is symmetrical across five complexity intervals, thus
it acquires the best performance of SRCC.

To make it easier to understand the IC, we show some
visualization results predicted by our model in Fig. 8. We
can find that the predicted scores are very close to the
ground truth scores. The right image of each pair is the
complexity map predicted from the detail branch. For vi-
sualization, we upsample the predicted map to the size of
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Fig. 7. Performance of ICNet on each semantic category in our proposed dataset using the metrics PCC, SRCC, RMSE, and RMAE.

TABLE 5
Ablation analysis of two branches and SLAM.

Settings Metrics

PCC ↑ SRCC ↑ RMSE ↓ RMAE ↓

Only detail branch 0.929 0.927 0.063 0.222
Only context branch 0.939 0.933 0.061 0.219

Both branches 0.944 0.939 0.058 0.215
Both branch + SE [66] 0.944 0.939 0.059 0.218

Both branch + CBAM [67] 0.943 0.942 0.059 0.217
Both branch + BAM [68] 0.944 0.938 0.057 0.214

Both branch + SLAM 0.949 0.945 0.053 0.205

the image by the bilinear interpolation and then α-blend it
with the input image. From these maps, we observe that
our model can explicitly find the visually complex regions
in an image. We can also find that the complex areas mostly
focus on the positions that have a large amount of objects,
textures, edges, variations, etc., and are hard for a person
to explicitly describe. These maps have great potential to
give the models (machines) guidance for understanding the
complexity distribution in an image and may be applied to a
variety of tasks, e.g., image cropping, automatic drive, image
generation, advertisement designing, etc., in the future. The
last row of the figure shows two kinds of failure cases.
The first and second samples have many local textures so
that the model tends to predict a higher score. Most of the
area of the third example is blank, thus the model predicts
a lower complexity score. Collecting more images of such
kind samples may help to address these failure cases in
the future. Besides, we plot the training dynamics of the
predicted map in Fig. 9. We can observe that in the earlier
period, the complexity heat map is uniformly distributed
on the entire image regardless of its content since the initial
model has limited direct knowledge of IC. With the progress
of training, the model is supervised to predict the global
complexity from averaging local areas, which indirectly
requires fine-grained predictions for each pixel. Therefore,
there emerge high complexity areas revolving around fore-
ground objects, and the boundaries between low and high
complexity pixels are refined from coarser to smoother. In
the end, from learning the entire dataset with thousands
of images, the model is instructed to learn the patterns of
constructing a reasonable complexity map to minimize the
loss between averaged activations and ground truth scores,
thus the predicted complexity heat map can precisely reflect

the pixel-level complexity of the whole image.

5.3 Ablation Study
We investigate the effectiveness of each component in our
proposed model. The results are presented in Tab. 5. When
only using the detail branch, we get a PCC of 0.929, which
is lower than only using the context branch (PCC is 0.939).
Even though the detail branch is fed with a high-resolution
image, it mostly captures low-level and spatial information
while the context branch can extract abstract and high-level
representations from small-scale image. And the results
indicate that the context information is more crucial in
IC evaluation. Nevertheless, they are both crucial cues for
people to perceive IC. Therefore, when we combine the two
branches, the performance can be improved to 0.944 (PCC).
Moreover, when we insert the proposed SLAM into the in-
termediate layers, the spatial layout information of features
is taken into consideration to refine features, thus the PCC is
further improved to 0.949. We have also investigated other
attention mechanisms by replacing SLAM with squeeze and
excitation (SE) [66], convolutional block attention module
(CBAM) [67], and bottleneck attention module (BAM) [68]
respectively. The results shown in Tab. 5 are similar to just
using only the context and detail branches. We speculate
that these attention mechanisms are designed for general
feature extraction but fail to take account of the intrinsic
traits of IC, thus suffering from poor generalization in the
IC assessment task. While the proposed SLAM is specifically
designed for the IC assessment, it utilizes the spatial layout
information and can further improve the performance.

6 APPLICATIONS AND DISCUSSION

In this section, we introduce several possible applications
of IC in multiple computer vision tasks. Applications of
IC in three ways and six sub-tasks are demonstrated. We
have also discussed more broad potential applications of
image complexity applying to many other areas outside of
computer vision or image processing.

6.1 As an Auxiliary Task
Multi-task learning is a general and intuitive idea, its re-
liable improvement for deep learning models has been
proved in many influential works [69], [70]. Its main idea
is to add more supervision information related to the main
task and optimize them simultaneously to help the model
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Fig. 8. Visualization results of some images from our test set. The left (right) image of each pair is the input image (predicted
complexity map). The number in the bracket represents the predicted complexity score from our model while the number outside
the bracket is its ground truth score (normalized to 0 − 1) labeled by the annotators. The last row shows several failure cases, of
which the predicted score is relatively far from the ground truth score.
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Fig. 9. Training dynamics of the predicted maps. ‘E’ represents the ‘Epoch’. Initially, The model in the first epoch (E0) can hardly
predict reasonable IC for each pixel. After several epochs of training, local areas with intricate textures and irregular layout have
shown higher activation while the clean and flat background (e.g., sky) is assigned lower IC score. In the following training, the
whole IC heat map has been progressively refined to be smoother and finer and presents clear distinctions between simple and
complex areas.

learn more robust features, thus improving the general-
ization ability. Here, we treat the complexity assessment
as an auxiliary task, and generate the supervision signals
automatically using our trained ICNet. We validate the
effectiveness of adding the auxiliary complexity assessment
sub-branch on four vision tasks.

• Image Aesthetic Assessment. IC has been verified to
be an critical indicator for aesthetic assessment by previous
works [71]–[73]. They find that complexity has negative
impacts on the appraisal of aesthetics. Motivated by this,
we try to improve the performance of image aesthetic as-
sessment by collaboratively optimizing this task with the IC
predicting. Specifically, in our experiment, the base model
is set to a common ResNet18 network by changing the
last fully-connected layer to output the aesthetic score or
aesthetic classes. The multi-task model is modified from the
base model by adding another branch behind the last aver-
age pooling layer to predict the IC score. For training the
multi-task model, we generate the ground truth complexity
score of each image by using the proposed ICNet trained on
our dataset. We train and test the base model and multi-
task model using the same experimental settings on the
AADB [16] and CUHKPQ [74] dataset. Both the pipelines
of the base model and multi-task model are shown in
Fig. 10. Experimental results are shown in the first row of
Tab. 6. We can observe that both the PCC and SRCC of
AADB and CUHKPQ datasets are improved by 1-2 percent,
which demonstrates the effectiveness of IC in improving the
performance of image aesthetic assessment by leveraging
such an auxiliary branch.

• Image Quality Assessment. Image quality assessment
is also a subjective task that is closely related to human
perception. The degree of IC correlates a lot with the percep-
tual image quality. For example, the complexity of an image
gets higher when high-frequency noise is injected, while it
drops as low-frequency blur is introduced [61]. Thus, we
also apply the IC to the image quality assessment on the
LIVEC [34] and KADID [37] dataset in a multi-task training
way. The experiments (ResNet18 backbone) are similar to
that of the above image aesthetic assessment. The pipeline
of the base model and multi-task model is shown in Fig.
10. Experiment results are shown in the second row of Tab.
6. Similar to image aesthetic assessment, when we collab-
oratively optimize the two tasks, the backbone is forced to
extract more general and robust features so that they can
satisfy the demands of both the two tasks. Thus when we
introduce another IC predicting branch, the performance of
IQA can be also improved.

PP MMM

PP

MMM

MMM

fc
input

input

main predictionResNet18(50)

ResNet18(50)

complexity score

main prediction

Base model

Multi-task model

Global average pooling SigmoidPP MM

Fig. 10. Illustration of the base and multi-task model for the tasks
of image quality assessment, image aesthetic assessment, and
image classification.

input

MCNN

Conv1×1

density map

complexity
score

input

MCNN
Conv1×1

density map

MCNN
Conv1×1

density map

SigmoidMM

Base model

Multi-task model

MM

Down-

Sample Flatten FC

Fig. 11. Illustration of the base model (MCNN) and multi-task
framework for the task of crowd counting.

• Image Classification The common image classification
tasks may also benefit from being supervised by IC scores.
Since IC is sometimes a discriminative feature of images
belonging to different categories, learning to excavate ef-
fective features for IC assessment also contributes to the
classification task. We conduct experiments on the Tsinghua
Dogs Dataset [75] using the ResNet50. As shown in Fig. 10,
we add a subbranch at the end of ResNet50 to regress an
IC score and backpropagate the MSE error that measures
the distance between the predicted score and the ground
truth score. The improvement of employing the additional
IC information is shown in the fifth row of Tab. 6.

• Crowd Counting. Crowd counting aims at estimating
the crowd count from an individual image. It is obvious that
the more people the picture contains, the more complex the
picture is. Thus the features that determine the complexity
of an image can be also utilized for crowd counting. For this
task, we conduct experiments using the Multi-column CNN
(MCNN) [19]. MCNN consists of three parallel columns and
predicts the crowd density map (task1) using the merged
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input

BBS-Net

saliency map

input

BBS-Net

saliency map

complexity map

Base model

Improved model

Fig. 12. Illustration of the base model (BBS-Net) and the im-
proved model for the task of salient object detection.

feature maps from these columns. We improve the MCNN
by inserting another head (task2) behind the merged feature
maps. The head contains a downsampling layer to reshape
the feature map to a small size, a flatten layer to flatten
the feature map, and a fully-connected layer to predict the
complexity score. In this way, the model can be collabora-
tively optimized by the two tasks. Here the ground truth
complexity score is generated by our ICNet. The multi-task
model uses the same training settings as the base model.
The pipeline of training the original MCNN and multi-
task MCNN is shown in Fig. 11. The training framework is
modified from [76] and the evaluated WorldExpo10 [77] and
UCF QNRF [78] dataset are also acquired from it. Results
on the third row of Tab. 6 show that the parallel complexity
predicting task can reduce the error of crowd counting (with
lower MAE and RMSE).

6.2 As a Complexity Modality

The proposed model ICNet can generate a pixel-level com-
plexity map from the map prediction head. Such a fine
complexity map can be considered as a kind of modality
that provides guidance for models to understand the local
complexity degree of an image.

• Salient Object Detection. IC has a vital influence on
the salient object detection [20]. We can observe from Fig.
8 that the areas with high complexity are usually largely
overlapped with salient objects. Also, it is usually easy to
separate foreground objects from background regions for
visually simple images, while it seems hard to segment the
salient objects for complex images. To verify whether the IC
information can help to find salient objects, we make two
experiments on the DUTS [79] and PASCAL-S [80] dataset.
The BBS-Net [84] is chosen as our base model. It is designed
to find salient objects from the RGB modality and depth
modality by feeding them into two branches respectively.
Since BBS-Net provides an efficient and general multi-
modality extracting and fusing strategy. The original depth
channel can be simply replaced by other modalities. For the
base model, we make the input of the depth branch be zeros.
To leverage the complexity modality, we make the input of
the depth branch to be the complexity map generated by
our ICNet. We then train and test the two models using the
same settings. The pipeline of this task is shown in Fig. 12.
Tab. 6 shows that the model with complexity modality input
(i.e., ‘Ours’ in the table) has a higher value of max F-measure
and lower MAE value, compared with the base model. It

proves that the IC modality helps to segment salient objects
by providing prior guidance for the model in the areas that
are simple or complex in an image.

6.3 As a Prior Weight
It is intuitive that a visually complex image may be hard
to recognize or segment. To address this, we can set high
weights for the complex images or the complex local areas
to make the model focus more on them.

• Image Classification. Here, we attempt to consider the
IC score of an image as the prior knowledge to represent
the degree of difficulty for the model to correctly classify it.
Since image classification is an image-level task, we utilize
the image-level complexity score to weight each sample. We
conduct an experiment using the ResNet50 [57] on the food-
101 dataset [81]. Specifically, for the base model, we use the
cross-entropy loss to optimize the model, the loss is defined
as `ce = −(

∑N
i=1

∑C
j=1 y

j
i ln p

j
i )/N , where N is the total

image number, C is the total categories. If j is the ground
truth label, yji = 1, otherwise yji = 0. pji is the output
of the final softmax layer. While for the improved model,
we modify the loss to `′ce = −(

∑N
i=1 wi

∑C
j=1 y

j
i ln p

j
i )/N ,

where wi represents the weight of sample i, and is the same
as the complexity score predicted by the proposed ICNet. In
this way, the prior complex images will be given higher loss
weights to optimize them. Results in the fifth row of Tab.
6 show that we can effectively improve the performance of
classification task by leveraging the prior IC weight.

• Image Segmentation. For image segmentation, we give
pixel-level weights for each image according to the IC
map generated by our model (i.e., high complexity areas
are given higher weights) when calculating the losses. We
conduct experiments on the PASCAL VOC2012 [82] and
CityScapes [83] dataset. The representative Deeplabv3 seg-
mentation model [85] is employed for comparison. For the
base model, the pixel-wise cross entropy loss mask L for an
image is defined as L = −

∑C
j=1 Gj � lnYj , where C is the

total classes, Gj and Yj are the ground truth map and pre-
dicted map for the class j, � means element-wise product.
We back propagate the average loss of the mask L, denoting
as ` = 1

H
1
W

∑H
i=1

∑W
j=1 Lij , where H and W are the height

and width of the mask. For the improved model, the loss
mask L′ is calculated by: L′ = −W �

∑C
j=1 Gj � lnYj ,

where W represents the complexity map produced by IC-
Net. The last row of Tab. 6 shows that using the IC map can
help to improve the performance of image segmentation.

6.4 Applications Outside of Computer Vision
We believe that except for what we mentioned above, image
complexity can be applied to more broad areas. And we
have thoroughly reviewed potential applications from a
wide range of related works.

• Psychology. Understanding visual complexity (VC)
serves as a medium of studying the underlying human
perception. Gestalt psychology (gestaltism) [86] originated
from discovering the connections between sensory input
and perceptual complexity intensity roots VC as the foun-
dation of revealing how the human brain perceives experi-
ences. Researches from the single visual form, visual array,
to visual display [87] in this area are mostly boiled down to
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TABLE 6
IC boosts the performance of a variety of vision tasks. ‘maxF’ and ‘Acc’ represent the max F-measure and accuracy. ‘Base’=

baseline methods. ‘Ours’ = Base + IC information.

Tasks Datasets Metrics Base Ours Dataset Metrics Base Ours

Image Aesthetic
Assessment

AADB
[16]

PCC ↑ 0.702 0.713 CUHKPQ
[74] ACC↑ 0.856 0.878SRCC ↑ 0.693 0.705

Image Quality
Assessment

LIVEC
[34]

PCC ↑ 0.842 0.851 KADID
[37]

PCC ↑ 0.706 0.730
SRCC ↑ 0.806 0.818 SRCC ↑ 0.724 0.745

Crowd Counting WorldExpo10
[77]

MAE ↓ 19.33 16.83 UCF-QNRF
[78]

MAE↓ 276 250
RMSE ↓ 28.64 25.04 RMSE↓ 425 386

Salient Object
Detection

DUTS
[79]

maxF ↑ 0.855 0.865 PASCAL-S
[80]

maxF ↑ 0.893 0.899
MAE ↓ 0.043 0.039 MAE ↓ 0.071 0.068

Image Classification Food-101
[81] ACC↑ 0.814 0.834 Tsinghua Dogs

[75] ACC↑ 0.804 0.818

Image Segmentation VOC2012
[82]

mIoU ↑ 0.594 0.610 CityScapes
[83]

mIoU ↑ 0.612 0.623
pixACC ↑ 0.858 0.872 pixACC ↑ 0.923 0.925

excavating and understanding the internal VC mechanisms.
Besides, VC has been proven to affect a wide variety of
psychologic areas, including attention and emotional sys-
tems [88], mechanisms of visual pattern encoding [89], and
visual memorability [18], etc.

• Arts. Visual complexity largely dictates the appraisal
of arts. For instance, a strong positive linear correlation be-
tween complexity and building appearance has been found
in [90]. Gartus et al. [91] suggest that complexity largely
influences abstract patterns through dimensions of quantity
and structure. Besides, relationships between aesthetics of
drawing, painting, photography etc., and VC are still under
broad studies [4], [5], [92], [93]. Therefore, an accurate IC
evaluation tool will benefit a wide area of arts in helping
assess intrinsic arts value.

• Webpage and Advertisement Design. Numerous
studies prove that complexity plays a critical role in the
webpage and advertisement design. Pieterset al. [94] find
that dense visual feature complexity in advertisements hurts
customers’ attention and attitude towards the brand. Simi-
larly, excessive complexity of background in live streaming
is also shown to have negative impacts on individuals’
purchase intention [95]. Besides, complexity has shown
more significance in users’ satisfaction when shopping with
mobile devices [96]. In addition, simplicity and clearness
have become modern webpage design trends since less
complexity is demonstrated to have more attractions [6],
[97]. All of the above studies imply that VC should be
carefully controlled in commercial activities.

• Discussions. The applications we listed above are
mostly outside computer vision and cross a wide range of
areas. Among them, an automatic and reliable IC assessment
method is urgently needed since : First, most researchers
assess IC by employing traditional methods such as edge
detection or image compression, which can not precisely re-
flect comprehensive image complexity, and thus may result
in biased conclusions. Second, without reliable IC assess-
ment tools, the complexity of an image in some research
is mostly collected from multiple human ratings, which is
inflexible, expensive, and time-consuming, thus obstructing
large-scale IC applications. To address the above issues, we
believe our high-quality dataset and reliable IC assessment

model will bring a huge favor to boost further IC research
and potential applications.

7 CONCLUSION

In this paper, we introduce the challenging and long over-
looked problem of image complexity assessment. We first
address the most critical data deficiency problem by build-
ing a large-scale benchmark dataset consisting of 9, 600 care-
fully labeled images from diverse categories. Based on this
dataset, we then provide a baseline model, called ICNet, to
evaluate the complexity score of images, which can achieve
a high PCC with the human perception. Additionally, we
make an attempt to apply the complexity evaluation model
to six tasks and experimental results demonstrate that IC
can help to improve their performance. We hope the pro-
posed dataset, model, and exploration of applications can
encourage and promote the further research of IC.
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