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Abstract

We present a masked vision-language transformer (MVLT) for fashion-specific multi-modal
representation. Technically, we simply utilize vision transformer architecture for replacing
the BERT in the pre-training model, making MVLT the first end-to-end framework for
the fashion domain. Besides, we designed masked image reconstruction (MIR) for a fine-
grained understanding of fashion. MVLT is an extensible and convenient architecture that
admits raw multi-modal inputs without extra pre-processing models (e.g., ResNet), implic-
itly modeling the vision-language alignments. More importantlyy, MVLT can easily general-
ize to various matching and generative tasks. Experimental results show obvious improve-
ments in retrieval (rank@5: 17%) and recognition (accuracy: 3%) tasks over the Fashion-Gen
2018 winner Kaleido-BERT. Code is made available at https://github.com/GewelsJI/MVLT.
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1 Introduction

The emergence of transformer is drawing enor-
mous attention from the academic community,
facilitating the advancement of computer vision
(CV) [3, 4] and natural language processing
(NLP) [5, 6]. Benefiting from the robustness of
transformers, researchers also contribute to the
vision-language (VL) field [7-11] with zeal. To
better utilize the pre-trained models in CV and
NLP, existing general VL models are mainly
based on the BERT model [12] or adopt the
well-pretrained vision extractors [13, 14] or both.
However, general VL methods [15-17] still struggle
when applied to the fashion domain in e-commerce
because they suffer from the two main issues:
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2048-dim Prediction

Imagf Pitchesl, ’ {0.8,0.3, ...,0.2} BERT
87 [
9 4 {0.9, 0.1, ..., 0.2} —> {M, M, ..., M}
W - 2048-dim 2048-dim
Feature M Padding

1
'

Image Patches

@ Masked Image Modeling
@ Masked Image Reconstruction (Ours)

aEry o epr o] - L _
e e —
'] N‘L Masked Generative

\ % Patch Patch
&

Fig. 1 Different visual reconstruction tasks for VL pre-
training [1, 2] utilize masked image modeling (top) with
the random masking strategy (i.e., to use M padding
to replace raw vectors), which reconstructs pre-extracted
visual semantics (i.e., probabilities) at the feature-level.
We introduce a generative task named masked image
reconstruction (bottom), which directly reconstructs image
patches at the pixel level.
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a) Insufficient Granularity. Unlike the general
objects with complex backgrounds, only focus-
ing on coarse-grained semantics is insufficient for
a fashion product [18-20], as it would lead the
network to generate sub-optimal results. Contrar-
ily, the fashion-oriented framework requires more
fine-grained representations, such as a suit with
different materials (e.g., wool, linen, and cotton)
or collars (e.g., band, camp, and windsor). b)
Bad Transferability. The pre-extracted visual
features are not discriminative for fashion-oriented
tasks, restricting the cross-modal representations.
To address the above issues, we present a
novel VL framework, termed masked vision-
language transformer (MVLT). Specifically, we
introduce a generative task, masked image recon-
struction (MIR), for the fashion-based VL frame-
work. Compared to previous pre-training tasks,
such as masked image modeling (regression
task) or masked image classification (classifica-
tion task), MIR enables the network to learn
more fine-grained representations via pixel-level
visual knowledge (see Fig. 1). Further, inspired
by pyramid vision transformer (PVT) [21], we
utilize a pyramid architecture for our VL trans-
former. Then, we introduce the MIR task. These
two improvements significantly enhance the abil-
ity to adapt to fashion-specific understanding and
generative tasks, and can conduct in an end-to-end
manner. To this end, MVLT can directly process
the raw multi-modal inputs in dense formats (i.e.,
linguistic tokens and visual patches) without extra
(e.g., ResNet) pre-processing models [22, 23]. Our
main contributions are summarized as follows:

¢ We introduce a novel masked image recon-
struction (MIR) task, which is the first real
pixel-level generative strategy utilized in VL
pre-training.

e Based on the MIR task, we present an end-
to-end VL framework, called MVLT, for the
fashion domain, greatly promoting the transfer-
ability to the downstream tasks and large-scale
web applications.

e Extensive experiments show that MVLT signif-
icantly outperforms the state-of-the-art models
on matching and generative tasks.

2 Background

In recent years, BERT-based pre-training models
have been widely investigated in VL tasks. Many
previous attempts, such as LXMERT [24], VL-
BERT [25], and FashionBERT [1], were success-
ful in a wide range of downstream applications.
Experiments and discussions show that BERT is a
powerful method for learning multi-modal repre-
sentations, outperforming several previous CNN-
based [26] or LSTM-based [27, 28] approaches.
Compared to previous studies, this paper aims to
develop a more efficient self-supervised objective
that can be easily implemented in pre-training
and provides better representations for real-world
applications. Thus, we review research on masked
learning strategies and end-to-end multi-modal
schemes that inspired us the most.

2.1 Masked Learning Strategies

Masked modeling is the vital self-supervised task
in BERT [12] and initially demonstrates out-
standing abilities in natural language processing.
Researchers have replicated its strength in lan-
guage models because of its utility in multi-modal
and vision tasks. Most VL works [16, 25, 29] trans-
fer masked modeling into visual tokens and use
a regression task to construct the token feature
from nonsense-replace or a classification task to
predict the token’s attribute. To reduce the dif-
ficulty in learning, Kaleido-BERT [2] optimizes
masked modeling by employing a Kaleido strategy
that facilitates coherent learning for multi-grained
semantics. Although this work improves the per-
formance of VL-related tasks in fashion indeed, we
argue that the token-patch pre-alignment scheme
by using auxiliary tool [30, 31] is still complex
and impedes the application to practical settings.
Another work [32] introduces the MLIM approach
that strengthens the masked image modeling with
an image reconstruction task, which shares a
similar idea to ours. However, our experiments
showed that requiring a model to reconstruct the
entire image without any reminder is too diffi-
cult. Recently, BEIiT [33] and MAE [34] utilize
a BERT-style pre-training as part of the visual
learner, and they discover that models are effective
at learning semantics with such a scheme. These
two works strengthen our conviction that convert-
ing the original masked image modeling (i.e., a
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Fig. 2 Comparison of MVLT to cutting-edge fashion-oriented VL frameworks. FashionBERT (a) utilizes a language-based
encoder (i.e., BERT) to extract VL representations with single-scale visual input (i.e., image patches). Kaleido-BERT (b)
extends it with two upgrades: adds five fixed-scale inputs (i.e., Kaleido patches) to acquire hierarchical visual features and
designs Kaleido vision tasks to fully learn VL representations. However, the visual embedding of these models is frozen
(i.e., without parameter updating), thus, a lack of domain-specific visual knowledge severely hinders their transferability.
Differently, our MVLT (c) adaptively learns hierarchical features by introducing masked vision tasks in an end-to-end
framework, significantly boosting the VL-related understanding and generation.

regression task) to a masked image reconstruction
task is possible. However, our primary goal is to
design a generative pretext task that makes the
multi-modal modeling in VL pre-training easier
while eliminating the need for using prior knowl-
edge. It will be extremely helpful in our practical
application setting with billion-level data.

2.2 End-To-End Multi-Modal
Schemes

Pixel- BERT [35] is the first method to consider
end-to-end pre-training. It employs 2x2 max-
pooling layers to reduce the spatial dimension of
image features, with each image being downsam-
pled 64 times. Although this work sets a precedent
for end-to-end training, such a coarse and rigid
method cannot work well in practical settings
because it is simply combined with a ResNet [13]
as part of joint pre-training, without consider-
ing the loss in speed and performance. Recently,
VX2TEXT [36] proposes to convert all modalities
into language space and then perform end-to-end
pre-training using a relaxation scheme. Though it
is exciting to translate all the modalities into a
unified latent space, it ignores that the usage of
data extracted by pre-trained methods as input
to the model cannot be regarded as an end-to-end
framework. According to the timeline, ViLT [37]
is the first method that indeed investigates an
end-to-end framework via replacing region- or
grid-based features with patch-based projections.
However, without other designs, it cannot obtain

competitive performance since it is just a vanilla
extension of ViT [3]. Grid-VLP [38] is similar
to ViLT, but it takes a further step by demon-
strating that using a pre-trained CNN network
as the visual backbone can improve performance
on downstream tasks. SOHO [39] takes the entire
image as input and creates a visual dictionary
to affine the local region. However, this method
does not fit fashion-specific applications due to
the lack of reliable alignment information. As a
result, the vision dictionary may merely learn the
location of the background or foreground rather
than complex semantics. FashionVLP [40] uses a
feedback strategy to achieve better retrieval per-
formance. In practice, they use the well-pretrained
knowledge extracted from ResNet and then model
the whole, cropped, and landmark representa-
tions. Besides, they adopt Faster-RCNN as an
object detector for popping out Rol candidates.
Besides, some works are designed for end-to-end
pre-training [41-43], but they are used for spe-
cific tasks and are not directly applicable to our
research.

Despite existing methods employing different
approaches to construct an end-to-end scheme,
solutions that forgo pre-trained methods (e.g.,
ResNet, BERT) and use raw data (i.e., text,
image) as inputs remain under-explored and are
needed urgently in multi-modal applications.
Remarks. As shown in Fig. 2, similar to the
existing two fashion-based approaches, i.e., Fash-
ionBERT (a) and Kaleido-BERT (b), the pro-
posed MVLT (c) is also a patch-based VL learner,
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Fig. 3 Pipeline of our MVLT framework. Our overall architecture consists of four stages containing language and visual
embeddings and multiple transformer encoders (X Mjy). Introducing the masking strategy for three sub-tasks, i.e., masked
image reconstruction (MIR), image-text matching (ITM), and masked language modeling (MLM), our MVLT can be trained

in an end-to-end manner. More details can be found in Sec. 3.

which extends the pyramid vision transformer [21]
to an architecture that adaptively extracts hier-
archical representations for fashion cross-modal
tasks. It is the first model that solves the end-to-
end problem of VL pre-training in fashion, which
allows us to simplify the implementation of our
MVLT in the fashion industry using a twin-tower
architecture [44].

3 Masked Vision-Language
Transformer

Our goal is to build an end-to-end VL framework
for the fashion domain. The overall pipeline of
our MVLT is depicted in Fig. 3. Like PVT, our
architecture inherits four stages’ properties and
generates features with different sizes. Two keys
of the proposed architecture are the multi-modal
encoder (Sec. 3.1) and the pre-training objectives
(Sec. 3.2).

3.1 Multi-Modal Encoder

As shown in Fig. 3, MVLT admits visual and
verbal inputs. On the language side, we first tok-
enize the caption of a fashion product and use the
specific token [MASK] to randomly mask out the

caption tokens with the masking ratio! r;. Follow-
ing the masking procedure, we obtain a sequence
of word tokens. Then, we insert a specific [CLS]
token at the head of this sequence. Besides, we
pad the sequence to a unified length L using the
[PAD] token if the length is shorter than 128.
This procedure generates the language input ids
T € RY = (t1; ---; tr). On the vision side,
we treat I € RTXWx3 a5 visual input, where H
and W denote the height and width of the given
input. This input is sliced into multiple grid-like
patches V € RVXPXPX3 — (4, ... . yn), where
N = IQQV is the total number of patches and P
denotes the patch size. Similarly, the split patches
are masked out with mask ratio r,. We provide
more details about the above masking strategy for
the language and vision parts in Sec. 3.2.

The above multi-modal inputs are embedded
and fed into the consequent four VL interaction
stages (i.e., k € {1,2,3,4}). In the first stage, we
generate the vision and language embeddings, T
and V! respectively, via the given inputs (T and
V). Regarding the subsequent stages, we consider
only the k-th stage, to have concise illustrations.
As shown in the bottom part of Fig. 3, we first
embed the language embedding T* € RE*P* into

!We follow the default setting in BERT [12].



Table 1 Hyperparameter of our multi-modal encoders.

Hyperparameter k=1 k=2 k=3 k=4
Layer number My 2 2 2 2
Hidden size Dy, 64 128 320 512
Reduction size Ry 4 8 16 32
Kernel size K, 4 2 2 2
Stride length Sy 4 2 2 2

the language hidden feature m* € RL*Pr+1_ which
is formulated as:

mP = TF « WF 4+ Pk, (1)

where W € RDPxDPrtt and P € RL*Prn
are the learnable linear embedding and position
embedding matrices. Dy is the size of the hidden
feature embedding.
H W

The visual embeddings are V¥ € R%x ™ R XD’“,
where Ry denotes the spatial reduction factor of
visual embedding. To acquire pyramid visual fea-
tures, V¥ are then embedded and flattened into
the visual hidden feature n* € RUZW/Ri )X Disa
via a two-dimensional projection (i.e., Conv2D
block). In particular, this projection enforces the
network to reduce the equivalent spatial dimen-
sion from REW/EL to REW/Rit by utilizing the
convolutional kernel WF ¢ RPrxKixKixDit
with kernel size K} and stride length Sj. This
could be formulated as:

n* = Flatten(V* « W¥) 4 P*, (2)

where PF € RV*Pr+1 denotes the position embed-
ding matrix. We then concatenate these two VL
hidden features z¥ = (mF; n*) and feed them
into multiple (M} ) VL transformer encoders. Each
encoder contains the multi-head self-attention
layer with spatial reduction (i.e., reduce block),
multi-layer perceptron, and layer normalization.
Finally, we obtain the encoded multi-modal fea-
ture 2Pt = (mFt1; nFt1) and divide it into a
language part TF+t1 = m**! and a visual part
V#+1l = Reshape(n**!), where the Reshape(-)
operation consists in recovering the spatial dimen-
sion of the given feature.

After four VL interaction stages, we generate
the four text embeddings {T*}+_, and four pyra-
mid vision embeddings {V*}}_,, respectively.
Table 1 presents more detailed hyperparameter
settings of our method.
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Fig. 4 PVT-based architectures offer more options for
designing the masking strategy. The vanilla ViT-based
method (a) [37] only selects a fixed-scale patch to mask,
i.e., P2. However, PVT-based method (b) is more versa-
tile because it combines more fine-grained patches as a
basic masking unit, i.e., (a x P)2, where a € {1,2,..,8}.
These masked patches are not overlapped with each other.
This characteristic provides a flexible way to learn the suit-
able semantics by using different values for a. Notably, we
adopt a fixed scale factor of masking units in an individual
experiment.

3.2 Pre-Training Objectives

To acquire discriminative multi-modal representa-
tions, we adopt three pre-training tasks to estab-
lish the inter-and intra-relationships between the
most primitive VL modalities, including vision
(masked image reconstruction, MIR), language
(i.e., masked language modeling, MLM), and VL
(image-text matching, ITM) modalities.

Objective 1: Masked Image Reconstruction
(MIR). As for the general domain, models are
enough to learn the coarse-grained semantics from
the patch- or region-based objectives and achieve
satisfactory results. However, the fashion-specific
models require more fine-grained representations,
such as a suit with different materials (e.g., wool)
or collars (e.g., Windsor), which needs a pixel-
to-pixel vision pre-training objective. Inspired by
the masked language modeling [12], we attempt
to build the pixel-to-pixel relationships from the
perspective of generative tasks, which promote the
scalability of visual representations. We design the
Masked Image Reconstruction (MIR) to accom-
plish this idea. To help our model learn better
by MIR, we utilize the pyramid characteristic of
PVT architecture [21] to design a flexible mask-
ing strategy. Unlike the ViT-based method (a)



in Fig. 4, PVT-based architecture (b) masks out
the input image according to the masking unit
matrix that contains small-grained patches. Given
the patch sequence V = {v, })_| € RN*PxPx3
the masked-out sequence V\g is defined as:

Vie = Fu({M(g; o; )}, {vn})2))
{[ZERU]7 M(q; o; @) =1, (3)

Un, M(q; a; @) =0,

where Fps(-; -) represents a function (or pro-
cedure) of our masking strategy, ¢ is the ran-
domly selected area of the masking unit, and
[ZERO] means that we use a pixel value of zero?
to fill the selected areas. The masking units
{M(q; o <I>)}qQ:1 are derived from the indicator
function:

1, g€ 9,

0. q¢a, (4)

M(g; a; @) =1(q) = {

where each value in a set of integers ® is ran-
domly selected from range [1,Q] with ratio r,.
Q= % is the total number of masking units.
For instance in Fig. 4 (b), we can define « from
1 to 8. In our default settings, we set a = 4 to
capture more fine-grained semantics®.

Since the smooth-£1 loss is less sensitive to the
outliers, we use it as the pre-training objective to
reconstruct the whole image via the masked-out
sequence V\g. It is defined as:

LMIR= 0.5 (Izzvy) - I(Iay))z’ if IELy) — Iy <1,
| X, — L@y | =05, otherwise,
()
where I/(a:,y) and I,y denote the pixel at

coordinate (z,y) in the reconstructed image
I’ and the input image I, respectively. I’ =
Fvir(Vie; Wwir) is parameterized by learn-
able weights Wygr. Function Fyvir(; Wwmir)
denotes a standard four-level U-Net [45] decoder,
which admits four pyramidal vision embeddings
{V*}i_, as inputs.

2In fact, we set [ZERO] = 107% to bring better optimization
stability and less pattern degradation.

3The vanilla masking strategy in Fig. 4 (a) with P = 32
becomes a special case of our masking strategy in Fig. 4 (b)
when a = 8, P = 4.

Objective 2: Image-Text Matching (ITM).
The appended classification embedding in the last
language embedding T* is used to couple the
representations from VL modalities. We utilize
the function Frry(; WiTtm) to denote a full-
connected (FC) and softmax layers, parameterized
by the weights Wirnm. Firm outputs a two-class
probability vector prrm = Frrm ((T, V); Witm),
representing whether the input fashion image and
caption match (i.e., positive pair) or not (.e., neg-
ative pair). The positive pairs are selected from
the same fashion product category, whereas the
negative pairs are chosen at random from differ-
ent entries. The binary cross-entropy loss function
finally constrains this task:

Litm = — E¢r vy [yrrum log(prrv)

+ (1 = yrr™) log(1 — prru)], (©)
where y1rm denotes the ground-truth label, i.e., 1
for matched pairs and 0 for unmatched pairs.
Objective 3: Masked Language Model-
ing (MLM). Following [46], we randomly use
the specific token [MASK] to replace the orig-
inal text tokens. The target of the MLM is
to predict the text content for the masked
tokens using the unmasked tokens and patches.
Given a tokenized sequence T = {t1,...,tr},
the masked-out sequence is denoted by T\; =
{t1,..., [MASK],,...,tr,}. We wuse the cross-
entropy loss to model this objective:

Lyim = —Ex[log(pmrm)], (7)

where pypv = Fumem(Tyi;; Wanm) denotes
the predicted probability for each masked-
out token [MASK]; using T\;. The function
Furm (s WyLm) represents the parameters
W of a classifier. The final pre-training objec-
tive of the proposed MVLT is a combination of
the three objectives:

Liotal = w1 X Lavir +w2 X Lrrm+ws X Lym. (8)

3.3 Downstream Tasks

For a fair comparison, we follow the same train-
ing/inference protocols as in [1, 2] and also adopt
the Fashion-Gen 2018 [47] benchmark as the base
of our experiments. This dataset contains 67,666



Table 2 Retrieval (i.e., TIR and ITR) and recognition (i.e., M-CR and S-CR) performances on Fashion-Gen dataset. 1
means the larger, the better. Here, SumR=(RQ1+R@54+R@10) x100 and SumC=(A + macro-F) x 100. “N/A” means
the score is not available. “Diff” means the numerical difference between the performance of the second-ranked competitor

and our MVLT.

VSE VSE+4+4 SCAN PFAN VIiLBERT ImageBERT FashionBERT VL-BERT OSCAR Kaleido-BERT MVLT

Task |Metric arXiviy BMVC;g ECCV g arXivig NeurlPS;g  arXivgq SIGIRs ICLRoyg ECCVgq CVPRg; OURgyy  Diff
R@1 1|[4.350% 4.600% 4.300% 6.200% 21.12% 24.78% 26.75% 22.63%  25.10% 33.88% 34.60% +0.72%
TR |R@5 1| 12.76% 16.89% 13.00% 20.79%  37.23% 45.20% 46.48% 36.48%  49.14% 60.60% 78.00% +17.40%
R@10  1{|20.91% 28.99% 22.30% 31.52% 50.11% 55.90% 55.74% 48.52%  56.68% 68.59% 89.50% 120.91%
SumR || 38.02  50.48 39.6 58.51 108.46 125.88 128.97 107.63 130.92 163.07 202.1  439.03

R@1 1|[4.010% 4.590% 4.590% 4.290% 20.97% 22.76% 23.96% 19.26%  23.39% 27.99% 38.10% +5.11%
TR |R@5 1|11.08% 14.99% 16.50% 14.90% 40.49% 41.89% 46.31% 39.90%  44.67% 60.09% 77.20% +17.11%
R@10  1|[22.14% 24.10% 26.60% 24.20% 48.21% 50.77% 52.12% 46.05%  52.55% 68.37% 91.10% +22.73%
SumR || 37.18  43.68 47.69  43.39 109.67 115.42 122.39 105.21 120.61 156.45 201.4 444.95
A 1| n/a N/A N/A N/A N/A 90.77% 91.25% N/A 91.79% 95.07% 98.26% +3.19%
M-CR|macro-F 1|| N/A N/A N/A N/A N/A 0.699 0.705 N/A 0.727 0.714 0.896 +0.169
SumC 1| N/A N/A N/A N/A N/A 160.67 161.75 N/A 164.49 166.47 187.86 +21.39
A 1| Nn/a N/A N/A N/A N/A 80.11% 85.27% N/A 84.23% 88.07% 93.57% +5.50%
S-CR|macro-F t|| N/A N/A N/A N/A N/A 0.575 0.620 N/A 0.591 0.636 0.829 10.193
SumC 1| N/A N/A N/A N/A N/A 137.61 147.27 N/A 143.33 151.67 176.47 +24.80

fashion products (i.e., 60,147 entries for training
and 7,519 entries for testing) and their associated
product descriptions. Each product corresponds to
an image set (including 1 ~ 6 samples) at vari-
ous viewing angles. As a result, we utilize 260, 480
and 35,528 image-text pairs as training and test-
ing partitions, respectively. For a fair comparison,
we test MVLT and compared models on Fashion-
Gen using the following four fashion-related VL
downstream tasks.

Task 1: Text-Image Retrieval (TIR). The
TIR task requires the model to find a text with
the highest similarity value with different query
images. In particular, we take a product title
and its corresponding image as a positive image-
text pair, while the negative pairs are randomly
selected from a pool of mismatched images. To
increase our experiment’s difficulty, we constrain
a set of image-text candidates (i.e., a positive pair
and 100 negative pairs) in the same sub-category,
making them as similar as possible.

Task 2: Image-Text Retrieval (ITR). As
the reverse process of the TIR task, the ITR
task aims to retrieve a matching image given a
sequence of text entries of fashion description,
where these bidirectional retrieval tasks (i.e., TIR
and ITR) become a prominent member of cross-
modal research. Similar to the above selection
strategy in the TIR, we prepare a set of candidate
image-text pairs, including a positive pair and
100 negative pairs from the same sub-category.
We evaluate the zero-shot learning ability of our
MVLT without further fine-tuning for these two
retrieval tasks. We utilize three accuracy metrics

(i.e., RQ1, RQ@5, and R@10) for the evaluation
by ranking a series of predicted probabilities.
Task 3: Category Recognition (M-CR and
S-CR). This task has two parts: main-category
recognition (M-CR) and sub-category recogni-
tion (S-CR). These tasks act as the fundamental
role of practical e-commerce applications that
offer the specific category of the queried prod-
uct. We expect that the model should possess
the ability to recognize differences under different
granularity levels: 48 main-categories and 122 sub-
categories, such as {M-CR = SWEATERS, S-CR =
CREWNECKS}. After the class embedding in the last
language embedding T*, we add two independent
FC layers to generate the final probabilities for
two different recognition tasks. This procedure
requires additional fine-tuning with recognition
labels. We utilize two recognition-related metrics
to evaluate performance: accuracy (A) and macro
F-measure (macro-F).

Task 4: Masked Image Generation (MIG).
MIG task can be viewed as a pixel-wise reconstruc-
tion task. Each patch in the image is randomly
masked with the probability r, (refer to the pre-
training task MIR in Sec. 3.2). Then, we ask
the model to recreate the whole image using the
uncovered areas as visual clues.

4 Experiments

This section will detail our experiment to deter-
mine the factors leading to the success of the
proposed MVLT.
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99.96% 99.96% 99.88% 99.64% 99.54% 99.80% 99.25% 99.20% 98.64% 97.71%
» Long sleeve 'fully fashioned French terry' knit cashmere pullover in light grey. Rib knit crewneck collar, cuffs, and hem. Raglan sleeves. Rib knit
" panel at armscyes and side-seams. Signature 'four bar' striping knit in white at upper sleeve. Signature tricolor grosgrain pull-tab at back yoke. Tonal
[ p stitching. (99.96%, Matched)
3\ TR >« Long sleeve rib knit silk and cotton-blend sweater in navy. Crewneck collar. Red trim at hem. Dropped shoulders. Tonal stitching. (99.91%)
) \ (Rank@5) + Cotton knit pullover in black. Ribbed crewneck collar, cuffs, and hem. Intarsia skull pattern knit at front in black and grey. Tonal stitching. (85.90%)
-L ~ + Long sleeve cotton sweater in navy. Rib knit crewneck collar, cuffs, and hem. Raglan sleeves. Tonal stitching. (0.12%)

Long sleeve rib knit alpaca and wool-blend sweater in off-white. Distressing throughout. Crewneck collar. Tonal stitching. (0.01%)

» Long sleeve 'chunky' knit wool sweater in off-white. Rib knit V-neck collar, cuffs, and hem. Patch pocket at body. Tonal stitching. (99.95%,

[: p Matched)

» Long sleeve rib knit cotton off-the-shoulder sweater in black. V-neck collar. Tonal stitching. (99.94%)
ITR * Long sleeve rib knit merino wool off-the-shoulder pullover in black. Off-white rib knit cotton tank top-style underlay at V-neck collar. Tonal

stitching. (64.74%)

l (Rank@5)

Long sleeve knit crepe sweater in black. V-neck collar. Drop-tail hem. Tonal stitching. (0.50%)

» Long sleeve boxy ribbed knit sweater in black. V-neck collar. Trim in white at collar and cuffs. Raglan sleeves. Tonal stitching. (0.03%)

Fig. 5 Visualization results on the TIR and ITR tasks in terms of top-five ranked probabilities predicted by our MVLT.

“Matched” indicates the ground-truth image-text pair.

4.1 Settings

This part provides the hyperparameter settings
for our training procedure: i) Pre-training. We
utilize PyTorch to implement our method, which
is accelerated by 8 Tesla V100 GPUs. We adopt
AdamW optimizer with a momentum value of 0.9,
a mini-batch size of 1200 (i.e., 150 per GPU),
a weight decay of 107%. To avoid over-fitting,
we initialize MVLT on ImageNet pre-trained
weights [21]. The learning rate is initially set to
2.5 x 1073 and is changed using a cosine learning
schedule. For the visual side, the input image is
resized to H=W =256 and split into the multiple
sub-patches with a size of P = 4. For the lan-
guage side, all the product captions are tokenized
and padded to tokens with a unified length of L =
128, including classification, caption, and padding
tokens. The mask probabilities for vision and
language are set to r, = 0.5 and r; = 0.15, respec-
tively. We empirically set weighting factors {w; =
10, wy = 1,ws = 1} to balance the orders of mag-
nitude of different loss values. ii) Fine-tuning.
We transfer the pre-trained VL representation to
each downstream application via fine-tuning in an
end-to-end manner, whose settings are consistent
with the pre-training process.

4.2 Results

As described in Sec. 3.3, we provide the details
of four downstream fashion-related tasks. Experi-
mental results show that our MVLT outperforms
all competitors, including VSE [48], VSE++ [49],
SCAN [26], PFAN [50], VILBERT [16], Image-
BERT [15], FashionBERT [1], VL-BERT [25],
OSCAR [29], and Kaleido-BERT |[2], which
demonstrate the superiority for handling the VL
understanding and generation tasks.

TIR and ITR. As shown in Table 2, our
MVLT surpass the best method (i.e., Kaleido-
BERT-CVPRy;) on the TIR task by margins of
+17.40%, +20.91% across the R@5, R@10.
As for ITR, our method delivers more compet-
itive results, with improvements of +17.11%,
+22.73% on the R@Q5, R@Q10 metrics, respec-
tively. In any case, these results strongly support
that our model is powerful enough to match vision
and language. They also show how a) MIR and
b) end-to-end pre-training are useful in fash-
ion. We believe that MVLT would set a precedent
in many industrial applications because it is a
simple, cost-effective, and powerful architecture.
Besides, we present the visualization results of
these two retrieval tasks in Fig. 5.

M-CR and S-CR. Compared with BERT-based
architectures [1, 2, 15, 29], we also achieve top-
1 performances in these two tasks, demonstrating
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Fig. 7 Visualization of samples generated by our MVLT

our method have an excellent VL understand-
ing capability. Moreover, compared with the best
method Kaleido-BERT, our architecture improves
by 0.193 in macro-F metric for the S-CR task.
In addition, the mean improvements in terms of
the SumC metric (i.e., M-CR: +21.39 and S-CR:
+24.80) are very significant. Since this metric
is very sensitive to data distribution, it demon-
strates MVLT has super-strong robustness. We
also present the recognition results of M-CR and
S-CR in Fig. 6.

MIG. As shown in Fig. 7, we showcase recon-
structed images on the validation part of Fashion-
Gen 2018 (a) and our e-commercial website (b).
As seen, the reconstruction performance is truly
remarkable. Since it requires our method to learn
the fashion semantics truly, such results demon-
strate the generative ability of our approach.

4.3 Ablation Studies

Mask Ratio. Table 3 (a) present four vari-
ants for different mask probability r, (i.e., 0.10
(A1), 0.30 (A2), 0.70 (A3), 0.90 (A4)) and our
choice: 0.50 (Final). The RQ@5 rises steadily
with the masking probability until it reaches the
sweet spot (75.70% — 78.00%); then it reach

(b) Data from e-commercial website (Out-of-domain)

. The gray blocks represent the masked regions.
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Fig. 8 We designed four strategies to mask fashion
images. The random grid performs the best.

performance plummets (73.80%). We argue that
increasing the r, will make MIR more complex,
allowing MVLT to learn better semantics in a
more restricted situation. However, masking out
too much region will naturally result in losing valid
visual information, leading to bad results.
Masked Unit Size. Thanks to PVT’s flexibility,
we can easily try different sizes of masked patches.
As shown in Table 3 (b), we derive four variants
with masked unit size « (i.e., 1 (Bl), 2 (B2), 8
(B3), 16 (B4)) to compare with our setting: 4
(Final). We found the performance is sensitive to
this factor. It makes sense, revealing how vital it
is to learn a robust fashion-related representation
with a moderate granularity.

Masking Style. As shown in Fig. 8, we designed
four types of masking strategies for the MIR task,
whose quantitative differences are presented in



Table 3 Ablation studies of five key pre-training factors on our MVLT. More relevant analyses refer to Sec. 4.3.

(a) Mask Ratio (r,) |(b) Masking Unit Size (a)| (c) Masking Style | (d) Pre-Training Tasks [|(e) Pre-Train| MVLT
(A1) (A2) (A3) (A4) | (B1) (B2) (B3) (B4) | (C1) (C2) (C3) | (D1 (D2) (D3) (B1) (Final)
App. [Metric 0.10 0.30 0.70 0.90 1 2 8 16 | Grid Stroke Center| ITM ITM+MIRITM+MLM| w/o PVT
R@1 31.10% 33.50% 30.50% 30.70%|31.90% 30.30% 30.00% 32.20%|32.20% 31.40% 30.40%|30.40% 32.20% 32.90% 29.00%  [34.60%
TIR |R@5 75.70% 76.00% 75.50% 73.80%|75.30% 75.60% 73.90% 76.90%|75.30% 76.10% 75.10%|74.10% 76.00% 76.20% 72.20% 78.00%
R@10 |[88.60% 88.70% 88.00% 88.60%(89.60% 88.60% 88.20% 88.60%|88.50% 89.20% 87.20%|83.50% 87.20% 88.60% 86.60%  |89.50%
"7 Tlsumm®  |[195.40 198.20 104.00 193.10]196.80 194.50 192.10 197.70|196.00 196.70 192.70|188.00 195.40  197.70 |  187.80  |202.10
Diff 6.70 3.90 8.10 9.00 5.30 7.60 10.00 4.40 6.10 5.40 9.40 14.10 6.70 1.40 14.30
R@1 30.00% 29.90% 29.90% 28.50%(29.00% 29.70% 29.00% 28.90%|31.40% 31.10% 30.10%|29.30% 30.40% 28.40% 25.60%  [33.10%
ITR |R@5 75.70% 74.90% 76.50% 75.00%|76.90% T7.10% 74.20% 77.30%|77.40% 74.50% 73.90%|70.80% 75.50% 76.30% 71.50% 77.20%
R@10 |[88.80% 89.00% 89.20% 88.20%(89.40% 87.70% 88.00% 89.90%|89.60% 88.50% 87.80%|86.80% 87.80% 88.80% 85.90%  [91.10%
"7 Tlsumm®  |[194.50 193.80 105.60 101.70]195.30 194.50 191.20 196.10|198.40 194.10 191.80|186.90 193.70 _ 193.50 |  183.00  |201.40
Diff 6.90 7.60 5.80 9.70 6.10 6.90 10.20 5.30 3.00 7.30 9.60 14.50 7.70 7.90 18.40
M.CERI 08.16% 97.87% 98.09% 98.06%(98.03% 98.04% 98.11% 98.01%|98.12% 98.07% 98.04%|96.49% 97.11% 98.08% 97.92%  |98.26%
macro-F|| 0.870 0.860 0.890 0.870 | 0.870 0.880 0.850 0.870 | 0.869 0.877 0.870 | 0.806  0.853 0.876 0.879 0.896
"7 Tlsumec |[185.16 183.87 187.09 185.06]185.03 186.04 183.11 185.01|185.02 185.77 185.04|177.09 182.41  185.68 |  185.82  |187.86
Diff —2.70 —3.99 —0.77 —2.80|—2.83 —1.82 —4.75 —2.85|—2.84 —2.09 —2.82|-10.77 —5.45 —2.18 —2.04 -
son A 03.10% 93.34% 93.36% 93.23%(93.29% 93.34% 93.32% 93.32%|93.37% 93.21% 93.59%|89.64% 90.87% 93.29% 92.90%  [93.57%
macro-F|| 0.800 0.810 0.820 0.810 | 0.810 0.810 0.800 0.799 | 0.794 0.814 0.830 | 0.703  0.728 0.809 0.790 0.829
"7 Tlsume |[173.10 174.34 175.36 174.23]174.20 174.34 173.32 173.22|172.77 174.61 176.59|159.94 163.67  174.19 |  171.90  |176.47
Diff -3.37 —2.13 —1.11 —2.24|-2.18 —2.13 —3.15 —3.25|—-3.70 —1.86 +0.12|—16.53 —12.80 —2.28 —4.57 -

Table 3 (c), i.e., grid (C1), stroke (C2), cen-
ter (C3) and our random grid (Final) masking
strategies. As can be seen, the random grid mask-
ing (Final) yields the best results, while the

Table 4 Ablation study for the contribution of loading
PVT’s weights pre-trained on ImageNet [51].

M-CR
macro-F|

S-CR
macro-F

TIR
R@5 RQI10

ITR

R@5 TRQ@10 A A

0.879
0.896

92.90%
93.57%

0.790
0.829

71.50% 85.90%|97.92%
177.20%91.10%/98.26%

72.20% 86.60%
78.00% 89.50%)

w/o PVT]
w/ PVT)

other three perform poorly. We believe this is
because, in comparison to the grid (Cl) and
center (C3), random grid masking (Final) can
help MVLT construct comprehensive representa-
tions. As our strategy (Final) does, the stroke
(C2) also randomly masks the image given, yet it
more or less leaves unmasked visual cues in the
sub-patches. Our strategy enables the model to
easily predict the masked region because seman-
tics in the image are well preserved, enhancing the
model’s robustness to learning in-sight knowledge.
Pre-Training Objectives. As shown in Table 3
(d), we derive four different variants to investigate
the contribution of each objective, including ITM
(D1), ITM+MIR (D2), ITM+MLM (D3), and our
ITM+MIR+MLM (Final). When comparing D3
to D1 and D2 in the TIR task, we can see that D3
has a better performance in R@5 metric: 74.10%

Diffl

+5.80%

2.90%|+5.70% +5.20%|40.34%

1.7% 9%

+0.67% +3

Loading Pre-Trained Weight. As seen in
Table 4, we add an experiment to demonstrate
it is very important to load the PVT’s weight
pre-trained on ImageNet [51]. If not, it is obvi-
ous that our MVLT will suffer fierce drops (i.e.,
ITR: 77.20% — 71.50% in R@5, S-CR: 93.57% —
92.90% in A). It is reasonable because a method
pre-trained on large-scale general datasets can be
more applicable in a specific field. It has already
learned information such as color, texture, shape,

etc.

4.4 More

How does

Discussions

MVLT perform

in general

(D1) < 76.00% (D2) < 76.20% (D3). We conclude
MLM task can help the model thoroughly learn
the language knowledge, so it provides a more
precise query to recall better-matching images.
In the ITR task, we find the similar conclusion

when comparing (D2) to

(D1)

and D3 in RQ5

metric: 70.80% (D1) < 75.50% (D2) < 76.30%
(D3). It indicates that better visual learning leads
to an accurate image query to match the most
appropriate caption.

domains? To further investigate the potential
abilities in general settings, we here discuss two
extended questions. a) Can the general models
be directly transferred to the fashion domain?
Inspired by the huge impact of general vision-
language models, as in Table 5, we further investi-
gate the zero-shot performance of two typical gen-
eral models (i.e., VILBERT [16] and CLIP [52]).
This has once again demonstrated the neces-
sity and superiority of MVLT pre-trained on
the specific domains. b) Can MVLT also work
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Table 5 The comparison of zero-shot retrieval results on
the Fashion-Gen dataset.

TIR ITR
R@1T R@5F R@10T| R@1+ R@5T R@10T
ViLBERT (Zero-shot)|| 7.18% 18.73% 29.84%| 8.99% 15.34% 26.14%
CLIP (Zero-shot) ||16.30% 40.60% 55.60% |13.60% 43.10% 57.60%
MVLT (OUR)

34.60% 78.00%89.50%|33.10% 77.20%91.10%

Table 6 Retrieval results on the MS-COCO 2014
dataset. t means using an extra feature extractor (e.g.,
Faster RCNN).

TIR task (5K Test) ITR task (5K Test)
R@1T R@5F RQI0T | R@1T R@5T RQ@10T

Unicoder-VLT 48.40% 76.70% 85.90% | 62.30% 87.10% 92.80%
UNITER-Base! ||50.30% 78.50% 87.20% | 64.40% 87.40% 93.10%
ViLT-Base/32 41.30% 72.00% 82.50% | 61.80% 86.20% 92.60%
MVLT (OUR) || 49.66% 79.88% 87.50% |65.38% 90.04% 93.60%

well in the general domain? We further verify
the potential ability of our MVLT on the gen-
eral domain. Table 6 reports the performance on
MS-COCO 2014 dataset [53], where MVLT fol-
lows the same training standards as in [37]. It
shows that MVLT achieves promising results com-
pared to the latest models (é.e., Unicoder-VL [54],
UNITER [17], and ViLT [37]) without extra train-
ing data and special retrieval losses during the
training. It indicates that MVLT is also a promis-
ing solution when extended to general scenes.
Why do pyramid architecture and MIR
benefit? As mentioned in the introduction, there
are two understudied problems in the fashion
domain. To solve the transferability problem, pyra-
midal architecture [21] takes raw data as input
without complex pre-processing, which essentially
alleviates the applied burden in industry. Besides,
MIR does not need human annotations like clas-
sification tags, bounding boxes, or pixel-wise seg-
mentation labels. For the granularity problem [55],
the pyramidal architecture [21] provides multi-
scale features with rich semantics. Combined with
the MIR task, our framework can represent multi-
grained fashion knowledge (e.g., dress, V-neck).
These features are helpful and urgently required
in this field.

A VL model that performs well for semantic
understanding tasks (e.g., retrieval [56], classifica-
tion) can serve as a good foundation and be easily
applied to downstream tasks (e.g., text-to-image
synthesis [57], image captioning) by utilizing an
additional decoder. We didn’t conduct image cap-
tioning experiments because we focused on basic
representation learning in fashion this time.

MVLT v.s. MAE [34]. MAE learns general
representations by allowing the model to explore
pixel-to-pixel associations. So MVLT and MAE
are similar in this regard. However, our MVLT is
the first that introduces the vision reconstruction-
alike pre-training for multi-modal research (e.g.,
fashion domain).

5 Conclusion

We present a vision-language framework named
MVLT, which provides two contributions in this
field: 1) a newly-designed masked image recon-
struction (MIR) objective, and 2) an end-to-end
pre-training scheme. The experimental and abla-
tive analysis demonstrates the superiority of var-
ious matching and generative tasks. MVLT out-
performs the cutting-edge method Kaleido-BERT
with large margins on retrieval and recognition
tasks, which would catalyze the fashion domain.
The designed out-of-box method working end-
to-end could simplify the workflow (e.g., data
pre-processing and model training) for the actual
engineering value, which improves development
and business efficiency on large-scale e-commerce
websites by approximately 50%.

In the future, we will continue to investi-
gate an extremely efficient method in this field
using famous technologies like hashing [58], net-
work pruning, and knowledge distil to alleviate the
storage and computing limitations in real-world
e-commerce applications.
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