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Abstract Salient object detection (SOD) in

RGB and depth images has attracted increasing

research interest. Existing RGB-D SOD models

usually adopt fusion strategies to learn a shared

representation from RGB and depth modalities, while

few methods explicitly consider how to preserve

modality-specific characteristics. In this study, we

propose a novel framework, the Specificity-preserving

Network (SPNet), which improves SOD performance

by exploring both the shared information and modality-

specific properties. Specifically, we use two modality-

specific networks and a shared learning network to

generate individual and shared saliency prediction

maps. To effectively fuse cross-modal features in

the shared learning network, we propose a cross-

enhanced integration module (CIM) and propagate

the fused feature to the next layer to integrate

cross-level information. Moreover, to capture rich

complementary multi-modal information to boost SOD

performance, we use a multi-modal feature aggregation

(MFA) module to integrate the modality-specific

features from each individual decoder into the shared

decoder. By using skip connections between encoder

and decoder layers, hierarchical features can be fully

combined. Extensive experiments demonstrate that

our SPNet outperforms cutting-edge approaches on six

popular RGB-D SOD and three camouflaged object

1 School of Computer Science and Engineering, Nanjing

University of Science and Technology, China.

2 Key Laboratory of System Control and Information

Processing, Ministry of Education, Shanghai, China.

3 CVL, ETH Zurich, Switzerland. (dengpfan@gmail.com)

4 School of Computer Science and Engineering,

Northwestern Polytechnical University, Xi’an, China.

5 School of Computer Science and Engineering, Southeast

University, Nanjing, China.

6 Inception Institute of Artificial Intelligence, UAE.

Manuscript received: 2021-10-19; accepted: 2022-01-04.

detection benchmarks. The project is publicly available

at: https://github.com/taozh2017/SPNet.

Keywords Salient Object Detection, RGB-D, Cross-

enhanced Integration Module, Multi-

modal Feature Aggregation.

1 Introduction

Salient object detection (SOD, also called saliency

detection) aims to emulate the mechanisms of human

visual attention and locate the most visually distinctive

object(s) in a given scene [61]. SOD has been

widely applied in various vision-related tasks, such as

image understanding [108], action recognition [67, 71],

video/semantic segmentation [71, 77], and person re-

identification [95]. Although significant progress has

been made, it is still challenging to accurately locate

salient objects in many challenging scenarios, such

as images with cluttered backgrounds, low-contrast

lighting conditions, and salient object(s) having a

similar appearance to the background. Recently, with

the ready availability of depth sensors in smart devices,

depth maps have been introduced to provide geometric

and spatial information to improve SOD performance.

Consequently, fusing RGB and depth images has gained

increasing interest in the SOD community [5, 21, 24,

42, 52, 86, 87, 99, 101], and it is a challenging task to

adaptively fuse RGB and depth modalities.

Over past years, various RGB-D SOD methods

have been proposed; they often focus on how to

effectively fuse RGB and depth images. Existing fusion

strategies can be divided into categories using early

fusion, late fusion, and intermediate fusion. The early

fusion strategy often adopts a simple concatenation to

integrate the two modalities. For example, methods

in [53, 61, 68, 72, 79] directly integrate RGB and

depth images to form four-channel input. However, this

type of fusion does not consider the distribution gap
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Fig. 1 Comparison of two existing RGB-D salient object detection frameworks and our proposed model. (a) RGB and depth images

are fed into two independent network streams, and then fused high-level features are fed into a decoder to predict saliency maps

(e.g., [3, 4, 28, 48]). (b) Depth features are integrated into the RGB network using an auxiliary subnetwork (e.g., [6, 22, 84, 94,

105]). (c) Our method adopts two modality-specific networks and a shared learning network to explicitly explore modality-specific

characteristics and shared information. Features learned from the modality-specific decoders are integrated into the shared decoder

to boost SOD performance.

between the two modalities, which could result in an

inaccurate feature fusion. The late fusion strategy uses

two parallel network streams to generate independent

saliency maps for RGB and depth data, which are fused

to obtain a final prediction map [16, 27, 75]. However, it

is still challenging to capture the complex interactions

between the two modalities.

Recent research mainly focuses on intermediate

fusion, which utilizes two independent networks to

learn intermediate features of the two modalities

separately, and then the fused features are fed into a

subsequent network or decoder (see Fig. 1(a)). Other

methods carry out cross-modal fusion at multiple

scales [3, 4, 7, 28, 32, 33, 48]. As a result,

complex correlations can be effectively exploited from

the two modalities. Further methods utilize depth

information to enhance RGB features via an a auxiliary

subnetwork [6, 94, 105] (see Fig. 1(b)). For example,

Zhao et al. [94] introduced a contrast prior into a CNN-

based architecture to enhance the depth information,

which was then integrated with RGB features using

a fluid pyramid integration module. Zhu et al. [105]

utilized an independent subnetwork to extract depth-

based features, which were then incorporated into

the RGB network. The above methods focus on

learning shared representations by fusing them and

then use a decoder to generate the final saliency

map. Furthermore, there is no supervised decoder

to guide the depth-based feature learning [94, 105],

which may prevent optimal depth features from being

obtained. From a multi-modal learning perspective,

several works [31, 54, 102, 104] have shown that

exploring both the shared information and modality-

specific characteristics can improve model performance.

However, in the RGB-D SOD community, few methods

explicitly exploit modality-specific characteristics.

Thus, in this paper, we propose a novel RGB-

D SOD framework, the Specificity-preserving Network

(SPNet), which can effectively explore the shared

information as well as capture modality-specific

characteristics to improve the SOD performance.

Two encoder subnetworks are used to extract multi-

scale features for the two modalities (i.e. RGB and

depth), and a cross-enhanced integration module

(CIM) is proposed to integrate cross-modal features

in different feature layers. Then, we use a simple

U-Net [69] structure to construct a modality-specific

decoder, in which skip connections between the encoder

and decoder layers are used to combine hierarchical

features. In this way, we can learn powerful

modality-specific features in each independent decoder,

which also captures modality-specific characteristics

to provide cross-modal complementarity. Further, we

construct a shared decoder to combine hierarchical
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features from outputs of the previous CIM via a skip

connection. To make full use of the modality-specific

features, a multi-modal feature aggregation module

(MFA) is proposed to integrate them into the shared

decoder. Finally, we formulate a unified and end-to-

end trainable framework where shared and modality-

specific information are simultaneously exploited to

boost SOD performance.

The main contributions of our paper in summary are:

• A novel RGB-D salient object detection

framework, the Specificity-preserving Network

(SPNet), which explores shared information from

RGB and depth images as well as preserving

modality-specific characteristics.

• A cross-enhanced integration module (CIM) to

integrate cross-modal features and learn shared

representations for the two modalities. The output

of each CIM is propagated to the next layer to

explore rich cross-level information.

• An effective multi-modal feature aggregation

(MFA) module to integrate learned modality-

specific features. It allows our model to make full

use of the features learned in the modality-specific

decoder to improve salient object detection.

• Extensive experiments on six public RGB-D SOD

and three camouflaged object detection (COD)

datasets demonstrate the superiority of our model

over other cutting-edge methods. Moreover,

we carry out an attribute-based evaluation on

various state-of-the-art RGB-D SOD methods

under varying conditions (e.g. number of salient

objects, indoors or outdoors, lighting, and object

scale), which has not been done previously.
This paper significantly extends our previous work

in [103], as follows.

• We discuss differences between (i) our proposed

CIM and existing fusion strategies, and (ii) the

proposed CIM and MFA.

• We provide further details, including (i) a

review of existing RGB SOD methods. (ii) a

discussion of the importance of integrating multi-

level/scale features, (iii) better characterisation of

our evaluation metrics.

• We provide an additional ablation study and

attribute-based evaluation, to validate the

effectiveness of the shared decoder, and to

examine the effects of different numbers of CIMs.

We also show that our model can effectively

handle variations in object scale.

• We apply SPNetto a new RGB-D task: COD, and

demonstrate its superiority over existing methods.

2 Related Work

In this section, we review three types of works most

related to the proposed model, i.e. RGB salient object

detection, RGB-D salient object detection, and multi-

modal learning.

2.1 RGB Salient Object Detection

Early salient object detection methods were based

on hand-crafted features and various saliency priors,

such as a background prior [109], color contrast [1],

a compactness prior [100], and a center prior [36].

However, the generalizability and effectiveness of

these traditional methods are limited. With the

breakthrough of deep learning in the field of computer

vision, various deep learning-based salient object

detection methods have been developed with promising

results. For example, Hou et al. [30] proposed a

novel salient object detection method by introducing

short connections to the skip-layer structures within the

holistically-nested edge detector architecture. Wang et

al. [74] proposed a recurrent fully convolutional network

framework for salient object detection with promising

results. Liu et al. [50] proposed to hierarchically embed

global and local context modules into the top-down

pathway, which can generate attention over context

regions for each pixel. Deng et al. [13] proposed a

recurrent residual refinement network with residual

refinement blocks to accurately detect salient objects.

Further methods can be found in a survey [76]. Scale

variation is a key challenge in the SOD task, so several

methods have been proposed to integrate multi- level or

scale features [60, 78, 89, 91] to improve SOD results.

In our method, we consider how to effectively combine

cross-modal (RGB and depth) features, and how multi-

level information can be exploited via a cross-enhanced

integration module.

2.2 RGB-D Salient Object Detection

Early RGB-D based SOD methods often extracted

hand-crafted features from the input RGB-D data. For

example, Lang et al. [38] in the first RGB-D SOD

work utilized Gaussian mixture models to model the

distribution of depth-induced saliency. Subsequently,

several methods explored different principles, such as

center-surround difference [27, 37], contrast [14, 61, 68],

a center/boundary prior [46, 107], and background

enclosure [23]. However, these methods typically

provide poor results due to the limited expressivity

of handcrafted features. Benefiting from the rapid

development of deep convolutional neural networks

(CNNs), several deep learning-based works [21, 63, 66,

3
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Fig. 2 Architecture of SPNet, consisting of two modality-specific learning networks and a shared learning network. The former

preserve individual properties for RGB or depth, while the shared network fuses cross-modal features and explores complementary

information. Skip connections combine hierarchical features between encoder and decoder layers. Learned features from the modality-

specific decoder are integrated into the shared decoder to provide rich multi-modal complementary information, boosting saliency

detection. C denotes feature concatenation.

86, 94] have recently obtained promising results. For

example, Qu et al. [66] used a CNN model to fuse

saliency cues from different low levels into hierarchical

features to boost SOD abilities. Chen et al. [3] proposed

a complementarity-aware fusion module to effectively

integrate cross-modal and cross-level features for RGB

and depth modalities. Piao et al. [63] proposed a

depth-induced multi-scale recurrent attention network

to enhance cross-modality feature fusion. Fan et al. [21]

designed a depth purification unit to remove some low-

quality depth maps. Most other models [4, 7, 28, 41, 44,

48] employ cross-modal fusion at multiple scales using

different integration strategies.

2.3 Multi-modal Learning

Recently, multi-modal (or multi-view) learning has

attracted increasing attention: much data can be

collected from multiple sources or represented using

different types of features. One traditional strategy

directly concatenates feature vectors from such multi-

modal data into a feature vector. However, this may fail

to exploit the complex correlations within multi-modal

data. Thus, several multi-modal learning methods have

been developed to explicitly fuse the complementary

information from different modalities to improve model

results. These popular methods can be divided into

three types (i) co-training [2, 15] tries to minimize the

disagreement between different modalities, (ii) multiple

kernel learning [26] utilizes a predefined set of kernels

for multiple modalities and integrates these modalities

using the learned kernel weights, and (iii) subspace

learning [81, 85] assumes that a latent subspace exists

shared by different modalities, with one underlying

latent representation. To effectively fuse multi-modal

data, several deep learning-based models have also been

explored. For example, Ngiam et al. [56] proposed to

learn a shared representation from audio and video

inputs. Eitel et al. [17] adopted two separate CNN

streams for RGB and depth, combining them using

a late fusion network for RGB-D object recognition.

Hu et al. [31] presented a shared and individual multi-

view learning algorithm to explore further properties

of multi-modal data. Lu et al. [54] presented a shared-

specific feature transfer framework to perform a cross-

modal person ReID task.

3 Methodology

In this section, we first present the overall SPNet.

Then we describe the two key components in our model

the modality-specific learning network and shared

learning network, and finally provide the overall loss

function.

3.1 Overview

Fig. 2 shows the framework of our proposed

specificity-preserving network for RGB-D SOD. First,

RGB and depth images are fed into two stream

modality-specific learning networks to obtain their

multi-level feature representations, and a CIM learns

their shared feature representation. Secondly, the

individual and shared decoder subnetworks are each

utilized to generate saliency prediction maps,. The

original features from the encoder networks are

integrated into the decoder via skip connections.

Finally, to make full use of the features learned by

using the modality-specific decoder, an MFA module

4
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Fig. 3 Cross-enhanced integration module (CIM). C, +, ×,

and M denote feature concatenation, element-wise addition,

multiplication, and maximization, respectively.

integrates these features into the shared decoder. We

detail each key part below.

3.2 Modality-specific Learning Network

As Fig. 2 shows, the modality-specific subnetwork

is built upon Res2Net-50 [25], pretrained on the

ImageNet [70] dataset. Thus, there are five multi-

level features, i.e. FR = [fRm and FD = [fDm , m =

1, . . . , 5], in the modality-specific encoder subnetworks

for RGB and depth respectively. The input resolution

of the modality-specific encoder subnetwork is W ×
H. Thus, we have a feature resolution of (H/8) ×
(W/8) for the first layer, and a general resolution of

(H/2m) × (W/2m) (for m > 1). The number of

channel features in the m-th layer is denoted Cm, where

Cm = [64, 256, 512, 1024, 2048].

After obtaining the high-level features fR5 and

fD5 , they are then fed into the modality-specific

decoder subnetworks to generate individual saliency

maps. We further utilize a U-Net [69] structure to

construct the modality-specific decoder, where the skip

connections between encoder and decoder layers are

used to combine hierarchical features. Moreover, the

concatenated features (only fR5 and fD5 in the first stage

of the decoder subnetwork) are fed to the receptive field

block (RFB) [82] to capture global context information.

This modality-specific learning network enables us to

learn effective and powerful individual features for each

modality by retaining its specific properties. These

features are then integrated into the shared decoder

subnetwork to improve saliency detection.

3.3 Shared Learning Network

3.3.1 Structure

As Fig. 2 shows, in the shared learning network,

we fuse the cross-modal features from the RGB and

depth modalities to learn their shared representation,

which is fed into the shared decoder to generate the
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Fig. 4 Multi-modal feature aggregation module (MFA). C, +,

and × denote feature concatenation, element-wise addition, and

element-wise multiplication respectively.

final saliency map. We again adopt skip connections

between the encoder and decoder layers to combine

hierarchical features. Moreover, to make full use of

the features learned by the modality-specific decoder,

we integrate them into the shared decoder to improve

saliency detection.

3.3.2 Cross-enhanced Integration Module

Our CIM is used to effectively fuse cross-modal

features. Let the width, height, and number of channels

for the m-th layer be denoted Wm, Hm, and Cm.

Taking fRm ∈ RWm×Hm×Cm and fDm ∈ RWm×Hm×Cm

as an example, we use a 1 × 1 convolutional layer to

reduce the number of channels channel to Cm/2 for

speed. The CIM has two parts, for cross-modal feature

enhancement and adaptive feature fusion. First, we

use a cross-enhanced strategy to exploit correlations

between the two modalities by learning their enhanced

features. Specifically, as shown in Fig. 3, the two

features are fed into a 3 × 3 convolutional layer with

a sigmoid activation function to obtain the normalized

feature maps, wRm = σ(Conv3(fRm)) ∈ [0, 1] and

wDm = σ(Conv3(fRm)) ∈ [0, 1], where σ is the logistic

sigmoid activation function. To exploit correlations

between the two modalities, the normalized feature

maps can be regarded as feature-level attention maps to

adaptively enhance the feature representation. In this

way, the feature map from one modality can be used to

enhance the other modality. To preserve the original

information of each modality, a residual connection

is used to combine the enhanced features with the

original features. Thus, the cross-enhanced feature

representations for the two modalities are as follows:

fR
′

m = fRm + fRm ⊗ wDm,

fD
′

m = fDm + fDm ⊗ wRm,
(1)

where ⊗ denotes element-wise multiplication.

Having obtained the cross-enhanced feature

representations fR
′

m and fD
′

m , the critical task is

to effectively fuse them. Various strategies can be used

to fuse features from different modalities, including

5
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element-wise multiplication and maximization.

However, it is unclear which is best for specific tasks.

In order to benefit from the advantages of different

strategies, we apply element-wise multiplication

and maximization, and concatenate the results.

Specifically, the two features fR
′

m and fD
′

m are first

fed into a 3 × 3 convolutional layer to obtain smooth

representations, and then we carry out element-wise

multiplication and maximization, giving:

pmul = BConv3(fR
′

m )⊗ BConv3(fD
′

m ),

pmax = max(BConv3(fR
′

m ),BConv3(fD
′

m )),
(2)

where BConv(·) is a sequential operation that applies

3×3 convolution followed by batch normalization, then

a ReLU function. Then, we concatenate the results

as pcat = [pmul, pmax] ∈ RWm×Hm×Cm , and obtain

p1
cat = BConv3(pcat) through a BConv3 operation to

adaptively weigh the two parts. Further, the output

p1
cat is concatenated with the previous output fSm−1 of

the (m − 1)-th CIM, and fed into the second BConv3

operation. Finally, we obtain the output fSm of the m-

th CIM. Note that, when m = 1, we do not need to

use a 1 × 1 convolutional layer to reduce the number

of channels. Furthermore, there is no previous output

fSm−1 when m = 1, so we only feed the concatenated

features into a BConv3 operation.

We note that our CIM can effectively exploit

correlations between the two modalities via cross-

enhanced feature learning, and fuse them by adaptively

weighting the different feature representations. The

fused feature representation fSm is propagated to

the next layer to capture and integrate cross-level

information. Some works [53, 61, 72] directly integrate

RGB images and depth maps to form four-channel

input (cascaded operation), and other methods carry

out cross-modal fusion strategies, e.g. using attention-

based fusion modules [4, 7], fusion-refinement modules

(e.g.using summation) [48], etc. Unlike these methods,

our proposed CIM mainly exploits the correlation

between RGB and depth images, and then adaptively

integrates enhanced cross-modal features to obtain a

fused feature representation.

3.3.3 Multi-modal Feature Aggregation

To make full use of the features learned in the

modality-specific decoder, we propose a simple but

effective MFA module to integrate them into the shared

decoder. Specifically, in the m-th layer of the shared

decoder, we have the shared representation gSm, and

the learned features gRm and gDm in the modality-specific

decoder. As Fig. 4 shows, two features gRm and gDm
are multiplied by the shared features of the current

layer: gRSm = gSm ⊗ gRm and gDSm = gSm ⊗ gDm. The two

features are further concatenated ([gDRm , gDSm ]) and then

fed into a BConv(·) operation to obtain gScm . Finally,

we obtain the output of the MFA module to combine

the convolutional feature gScm with the original feature

gSm via an addition operation.

In the MFA, the learned modality-specific features

are used to enhance the shared features and provide

rich and complementary cross-modal information.

Specifically, we use the two modality-specific features

gRm and gDm to enhance gSm. More importantly, the

modality-specific decoder is given a supervision signal

to guide feature learning for modality-specific property

preservation, which benefits the final prediction results

when integrating them in the shared decoder. We

also note the differences between the CIM and the

MFA: the CIM is used to learn the fused multi-modal

(RGB and depth) feature representation, while the

MFA utilizes the learned modality-specific features to

form an aggregate feature representation in the shared

decoder.

3.4 Loss Function

We may now formulate a unified, end-to-end

trainable framework. The overall loss function has

two parts, Lsp and Lsh, for the modality-specific and

decoders, respectively. For convenience, SR and SD
denote the prediction maps for RGB and depth images,

respectively, Ssh denotes the prediction map using

their shared representation, and G denotes the ground

truth map. Therefore, the overall loss function can be

formulated as follows:

Ltotal = Lsh(Ssh, G) + Lsp(SR, G) + Lsp(SD, G). (3)

Here, we utilize the pixel position-aware loss [80] for

Lsp and Lsh, which can pay different attention to hard

and easy pixels to improve results.

4 Experimental Results and Analysis

In this section, we first give the experimental

setup, including datasets, evaluation metrics, and

implementation details. Then we carry out a

quantitatively and qualitatively evaluation, as well as

conducting ablation studies to validate the effectiveness

of each key component. Finally, we conduct an

attribute-based evaluation to show the effectiveness of

our model in dealing with different challenges.

4.1 Experimental Setup

4.1.1 Datasets

To validate the effectiveness of the proposed model,

we have evaluated it on six public RGB-D SOD

6
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Tab. 1 Benchmarking results using 8 representative traditional models and 23 deep models on six public RGB-D saliency detection

datasets using four widely used evaluation metrics: Sα [8], max Eφ[18], max Fβ [1], andM [62]). ↑, ↓ indicate that larger or smaller

is better. The subscript for each model denotes the publication year. Best results are highlighted in bold.

NJU2K [37] STERE [57] DES [10] NLPR [61] SSD [106] SIP [21]

Model Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓

LHM14 [61] .514 .632 .724 .205 .562 .683 .771 .172 .562 .511 .653 .114 .630 .622 .766 .108 .566 .568 .717 .195 .511 .574 .716 .184

ACSD14 [37] .699 .711 .803 .202 .692 .669 .806 .200 .728 .756 .850 .169 .673 .607 .780 .179 .675 .682 .785 .203 .732 .763 .838 .172

LBE16 [23] .695 .748 .803 .153 .660 .633 .787 .250 .703 .788 .890 .208 .762 .745 .855 .081 .621 .619 .736 .278 .727 .751 .853 .200

DCMC16 [12] .686 .715 .799 .172 .731 .740 .819 .148 .707 .666 .773 .111 .724 .648 .793 .117 .704 .711 .786 .169 .683 .618 .743 .186

SE16 [27] .664 .748 .813 .169 .708 .755 .846 .143 .741 .741 .856 .090 .756 .713 .847 .091 .675 .710 .800 .165 .628 .661 .771 .164

MDSF17 [72] .748 .775 .838 .157 .728 .719 .809 .176 .741 .746 .851 .122 .805 .793 .885 .095 .673 .703 .779 .192 .717 .698 .798 .167

CDCP17 [107] .669 .621 .741 .180 .713 .664 .786 .149 .709 .631 .811 .115 .669 .621 .741 .180 .603 .535 .700 .214 .595 .505 .721 .224

DTM20 [11] .706 .716 .799 .190 .747 .743 .837 .168 .752 .697 .858 .123 .733 .677 .833 .145 .677 .651 .773 .199 .690 .659 .778 .203

DF17 [66] .763 .804 .864 .141 .757 .757 .847 .141 .752 .766 .870 .093 .802 .778 .880 .085 .747 .735 .828 .142 .653 .657 .759 .185

CTMF18 [28] .849 .845 .913 .085 .848 .831 .912 .086 .863 .844 .932 .055 .860 .825 .929 .056 .776 .729 .865 .099 .716 .694 .829 .139

PCF18 [3] .877 .872 .924 .059 .875 .860 .925 .064 .842 .804 .893 .049 .874 .841 .925 .044 .841 .807 .894 .062 .842 .838 .901 .071

AFNet19 [75] .772 .775 .853 .100 .825 .823 .887 .075 .770 .729 .881 .068 .799 .771 .879 .058 .714 .687 .807 .118 .720 .712 .819 .118

CPFP19 [94] .878 .877 .923 .053 .879 .874 .925 .051 .872 .846 .923 .038 .888 .867 .932 .036 .807 .766 .852 .082 .850 .851 .903 .064

MMCI19 [6] .859 .853 .915 .079 .873 .863 .927 .068 .848 .822 .928 .065 .856 .815 .913 .059 .813 .781 .882 .082 .833 .818 .897 .086

TANet19 [4] .878 .874 .925 .060 .871 .861 .923 .060 .858 .827 .910 .046 .886 .863 .941 .041 .839 .810 .897 .063 .835 .830 .895 .075

DMRA19 [63] .886 .886 .927 .051 .886 .886 .938 .047 .900 .888 .943 .030 .899 .879 .947 .031 .857 .844 .906 .058 .806 .821 .875 .085

cmSalGAN20 [35] .903 .896 .940 .046 .900 .894 .936 .050 .913 .899 .943 .028 .922 .907 .957 .027 .791 .735 .867 .086 .865 .864 .906 .064

ASIFNet20 [40] .889 .888 .927 .047 .878 .878 .927 .049 .934 .935 .974 .019 .906 .888 .944 .030 .857 .834 .884 .056 .857 .859 .896 .061

ICNet20 [43] .894 .891 .926 .052 .903 .898 .942 .045 .920 .913 .960 .027 .923 .908 .952 .028 .848 .841 .902 .064 .854 .857 .903 .069

A2dele20 [64] .871 .874 .916 .051 .878 .879 .928 .044 .886 .872 .920 .029 .898 .882 .944 .029 .802 .776 .861 .070 .828 .833 .889 .070

JL-DCF20 [24] .903 .903 .944 .043 .905 .901 .946 .042 .929 .919 .968 .022 .925 .916 .962 .022 .830 .795 .885 .068 .879 .885 .923 .051

S2MA20 [51] .894 .889 .930 .053 .890 .882 .932 .051 .941 .935 .973 .021 .915 .902 .953 .030 .868 .848 .909 .052 .872 .877 .919 .057

UCNet20 [86] .897 .895 .936 .043 .903 .899 .944 .039 .933 .930 .976 .018 .920 .903 .956 .025 .865 .854 .907 .049 .875 .879 .919 .051

SSF20 [90] .899 .896 .935 .043 .893 .890 .936 .044 .904 .884 .941 .026 .914 .896 .953 .026 .845 .824 .897 .058 .876 .882 .922 .052

HDFNet20 [58] .908 .911 .944 .038 .900 .900 .943 .041 .926 .921 .970 .021 .923 .917 .963 .023 .879 .870 .925 .045 .886 .894 .930 .047

Cas-GNN20 [55] .911 .903 .933 .035 .899 .901 .930 .039 .905 .906 .947 .028 .919 .904 .947 .028 .872 .862 .915 .047 .875 .879 .919 .051

CMMS20 [41] .900 .897 .936 .044 .895 .893 .939 .043 .937 .930 .976 .018 .915 .896 .949 .027 .874 .864 .922 .046 .872 .877 .911 .058

CoNet20 [34] .895 .893 .937 .046 .908 .905 .949 .040 .909 .896 .945 .028 .908 .887 .945 .031 .853 .840 .915 .059 .858 .867 .913 .063

DANet20 [97] .899 .910 .935 .045 .901 .892 .937 .043 .924 .928 .968 .023 .915 .916 .953 .028 .864 .866 .914 .050 .875 .892 .918 .054

PGAR20 [9] .909 .907 .940 .042 .907 .898 .939 .041 .913 .902 .945 .026 .930 .916 .961 .024 .865 .838 .898 .057 .876 .876 .915 .055

D3Net21 [21] .900 .900 .950 .041 .899 .891 .938 .046 .898 .885 .946 .031 .912 .897 .953 .030 .857 .834 .910 .058 .860 .861 .909 .063

SPNet (Ours) .925 .935 .954 .028 .907 .915 .944 .037 .945 .950 .980 .014 .927 .925 .959 .021 .871 .883 .915 .044 .894 .916 .930 .043

datasets: NJU2K [37], NLPR [61], DES [10], SSD [106],

STERE [57] and SIP [21]. Details of each dataset

can be found at https://github.com/taozh2017/

RGBD-SODsurvey.

For a fair comparison, we utilized the same protocol

to form the training and test sets as introduced in [21,

63]. The training set includes 2,195 samples in total,

with 1,485 samples from NJU2K [37] and 700 samples

from NLPR [61]. The remaining samples from NJU2K

(500) and NLPR (300), and the entire DES (135), SSD

(80), STERE (1,000), and SIP (929) datasets were used

for testing.

4.1.2 Evaluation Metrics

We adopt four widely used metrics to evaluate the

effectiveness of the proposed model. Their definitions

are as follows.

• Structure Measure. The S-measure Sα [8]

assesses the structural similarity between regional

perception (Sr) and object perception (So), and is

defined as:

Sα = αSo + (1− α)Sr, (4)

where α ∈ [0, 1] is a trade-off parameter, set to 0.5

by default [8].

• F-measure. Given a saliency map S, we convert

it to a binary map M , and then compute the

Precision and Recall [1] using

Precision =
|M ∩G|
|M |

, Recall =
|M ∩G|
|G|

, (5)

where G denotes the ground-truth. A popular

strategy is to partition S using a set of thresholds

varying from 0 to 255. For each threshold, we

calculate a pair of recall and precision scores, and

then combine all scores to obtain a PR curve.

The F-measure Fβ [1] combines both precision and

recall, via a weighted harmonic mean:

Fβ =
(
1 + β2

) Precision× Recall

β2Precision + Recall
, (6)

where β2 is set to 0.3 to emphasize precision [1].

We use different fixed [0, 255] thresholds to

compute the F -measure. This yields a set of F -

measure values; we report the maximum Fβ values

from our experiments.
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• Enhanced-alignment Measure. Eφ [18] is used

to capture image-level statistics and local pixel

matching information. It is defined as

Eφ =
1

WH

W∑
i=1

H∑
i=1

φFM (i, j) , (7)

where φFM denotes the enhanced-alignment

matrix [18].

• Mean Absolute Error (M). It is adopted

to evaluate the average pixel-level relative error

between the ground truth (i.e., G) and normalized

prediction (i.e., S), which is defined by

M =
1

W ∗H

W∑
i=1

H∑
i=1

|S (i, j)−G (i, j)| , (8)

where W and H denote the width and height of

the map, respectively. M estimates the similarity

between the saliency map and the ground-truth

map, and normalizes it to [0, 1].

4.1.3 Implementation Details

Our proposed model was implemented with the

PyTorch library, and trained on an nVidia Tesla V100

GPU with 32 GB memory. Res2Net-50 [25], pre-

trained on ImageNet [70], was used as the backbone

network. Since RGB and depth images have different

numbers of channels, the input channel for the depth

encoder was modified to 1. We utilized the Adam

algorithm to optimize the proposed model. The initial

learning rate was set to 10−4 and divided by 10 every 60

epochs. The input RGB and depth images were resized

to 352 × 352. To enhance the generalizability of the

proposed learning algorithm, we adopted multiple data

augmented strategies: random flipping, rotation, and

border clipping. The batch size was set to 20 and the

model was trained over 200 epochs.

For testing, the RGB and depth images were first

resized to 352 × 352 and then fed into the model to

obtain the predicted saliency map. The predicted

saliency map was then resized back to the original size

of the input images. The output of the shared decoder

is regarded as the final prediction of our model.

4.2 Comparison

4.2.1 Models Compared

We compared our proposed SPNet with 30 RGB-

D saliency detection methods, including 8 handcrafted

traditional models: LHM [61], ACSD [37], LBE [23],

DCMC [12], SE [27], MDSF [72], CDCP [107], and

DTM [11], and 23 deep models: DF [66], CTMF [28],

PCF [3], AFNet [75], CPFP [94], MMCI [6], TANet [4],

DMRA [63], cmSalGAN [35], ASIFNet [40], ICNet [43],

A2dele [64], JL-DCF [24], S2MA [51], UCNet [86],

SSF [90], HDFNet [58], Cas-GNN [55], CMMS [41],

D3Net [21], CoNet [34], DANet [97], and PGAR [9].

See also the survey in [101].

4.2.2 Quantitative Evaluation

As Table 1 shows, our method is superior to the eight

traditional methods LHM [61], ACSD [37], LBE [23],

DCMC [12], SE [27], MDSF [72], and CDCP [107],

by a large margin, on all six datasets. Our method

furthermore outperforms all compared state-of-the-art

methods and obtains the best performance in terms

of the four evaluation metrics on NJU2K, DES, and

SIP datasets. It is worth noting that our model

obtains better results on STERE and NLPR than most

compared RGB-D saliency detection methods. Our

model is also comparable with CoNet on the STERE

dataset, and JL-DCF and PGAR on the NLPR dataset.

Overall, our proposed SPNetobtains promising results

in locating salient object(s) in a given scene. We further

show PR curves in Fig. 5 and F-measure curves in

Fig. 6, giving results for 29 RGB-D saliency detection

methods, including 28 state-of-the-art models with

complete saliency maps. The superiority of our model

is clearly visible on these datasets.

In addition, we compared our SPNet to 13 recent

state-of-the-art models on the ReDWeb-S dataset.

Results for the other methods are from https://

github.com/nnizhang/SMAC, while results for our

method were obtained by testing the model (trained

using NJU2K [37] and NLPR [61]) on the ReDWeb-S

dataset. The comparison is shown in Table 2. Our

method works better than most compared methods,

and is comparable to UCNet and JL-DCF on the

ReDWeb-S dataset.

We further compared using different backbone

networks in the proposed model, with the results shown

in Table 3. The proposed model works better when

using Res2Net-50 as the backbone, yet the model using

ResNet-50 as backbone still performs better than other

methods (see Table 1).

4.2.3 Qualitative Evaluation

Fig. 7 shows several representative samples of results

comparing our model with those from eight state-of-

the-art methods. The first row shows a scene with

a small object. Our method, A2dele, PGAR, and

D3Net accurately detect the salient object, while JL-

DCF, S2MA, SSF, and UCNet predict some non-

object regions. Rows 2,3 show two examples of scenes

with complex backgrounds. Our method and S2MA

produce reliable results, while other RGB-D saliency

8
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Fig. 5 PR curves for six datasets: NJU2K [37], STERE [57], DES [10], NLPR [61], SSD [106], and SIP [21].
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Fig. 6 F-measure curves for different thresholds, for NJU2K [37], STERE [57], DES [10], NLPR [61], SSD [106], and SIP [21].
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RGB Depth GT Ours A2dele JL-DCF S2MA UCNet SSF D3Net DANet PGAR

Fig. 7 Visual comparison of results from our method and eight state-of-the-art methods: A2dele [64], JL-DCF [24], S2MA [51],

UCNet [86], SSF [90], D3Net [21], DANet [97], and PGAR [9].

Tab. 2 Results from our model and 13 state-of-the art methods: CTMFF [28], PCF [3], AFNet [75], MMCI [6], CPFP [94],

DMRA [63], TANet [4], A2dele [64], UCNet [86], JL-DCF [24], S2MA [51], SSF [90], and D3Net [21] on the ReDWeb-S dataset.

Model CTMF PCF AFNet MMCI CPFP DMRA TANet A2dele UCNet JL-DCF S2MA SSF D3Net Ours

Sα ↑ 0.641 0.655 0.546 0.660 0.685 0.592 0.656 0.641 0.713 0.734 0.711 0.595 0.689 0.710

Fβ ↑ 0.607 0.627 0.549 0.641 0.645 0.579 0.623 0.603 0.710 0.727 0.696 0.558 0.673 0.715

Eφ ↑ 0.739 0.743 0.693 0.754 0.744 0.721 0.741 0.672 0.794 0.805 0.781 0.710 0.768 0.800

M ↓ 0.204 0.166 0.213 0.176 0.142 0.188 0.165 0.160 0.130 0.128 0.139 0.189 0.149 0.129

Tab. 3 Results from our model using different backbone networks.

NJU2K [37] STERE [57] DES [10] NLPR [61] SSD [106] SIP [21]

Backbone Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓Sα ↑Fβ ↑Eξ ↑M ↓

ResNet-50 .922 .934 .952 .030 .904 .914 .942 .037 .936 .944 .974 .016 .930 .931 .965 .020 .869 .876 .906 .044 .896 .916 .934 .041

Res2Net-50 .925 .935 .954 .028 .907 .915 .944 .037 .945 .950 .980 .014 .927 .925 .959 .021 .871 .883 .915 .044 .894 .916 .930 .043

detection models fail to locate the object or confuse

the background with a salient object. In row 4,

the compared methods other than D3Net locate a

non-salient and small object. In row 5, we show

an example with multiple salient objects, where it

is challenging to accurately locate them all. Our

method locates all salient objects and segments them

more accurately, generating sharper edges than other

approaches. We show an example under low-light

conditions in the last row. While some approaches

fail to detect the entire extent of the salient object,

our model suppresses background distractors and gives

good saliency detection results.

Tab. 4 Comparisons of inference time (ms) and model size

(MB) for different methods.

Method Ours JL-DCF S2MA

Model Size 175.3 124.5 82.7

Inference Time 91.7 21.8 22.1

Method UCNet SSF HDFNet

Model Size 31.3 32.9 153.2

Inference Time 31.8 45.7 57.1

4.2.4 Inference Time and Model Size

We tested the inference time for different methods on

an NVIDIA TESLA P40 GPU with 24G memory. The

inference times and model sizes of different methods,

10
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Tab. 5 Quantitative evaluation for ablation studies.

NJU2K [37] STERE [57] DES [10] NLPR [61] SSD [106] SIP [21]

Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓

Ours .925 .028 .907 .037 .945 .014 .927 .021 .871 .044 .894 .043

A1 .916 .034 .898 .042 .939 .016 .926 .022 .869 .047 .892 .044

A2 .921 .031 .895 .042 .938 .016 .925 .022 .865 .051 .896 .042

A3 .919 .032 .895 .043 .938 .016 .929 .020 .864 .049 .887 .048

A4 .924 .029 .903 .038 .930 .019 .927 .023 .867 .049 .888 .046

B1 .918 .034 .901 .041 .939 .017 .922 .024 .858 .050 .885 .048

B2 .924 .029 .900 .041 .941 .015 .926 .022 .864 .049 .893 .044

B3 .921 .031 .903 .039 .938 .016 .925 .022 .863 .050 .891 .045

C1 .913 .037 .900 .047 .935 .019 .922 .025 .861 .055 .880 .051

C2 .916 .034 .906 .040 .923 .021 .924 .022 .866 .049 .882 .051
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Fig. 8 Comparison of MFA module with other fusion strategies.

including our SPNet, JL-DCF [24], S2MA [51],

UCNet [86], SSF [90], and HDFNet [58], are shown

in Table 4. Because our model adopts two modality-

specific networks and a shared learning network to

generate individual and shared saliency prediction

maps, it has a relatively large model size and takes

more inference time for saliency prediction than other

methods. We thus hope to design lightweight networks

to improve the efficiency of SPNet in future work.

4.3 Ablation Studies

To verify the relative importance of different key

components of our model, we conducted ablation

studies by removing or replacing them.

4.3.1 Effectiveness of CIM

Since the proposed CIM is used to fuse cross-

modal features and learn their shared representation,

compared it to an alternative of a direct concatenation

strategy. Specifically, the two features fRm and fDm (see

Fig. 3) are directly concatenated and then fed into a 3×
3 convolutional layer to obtain the fused representation

in each layer. We denote this approach as A1 in

Table 5, which shows that our model performs better

when using the proposed CIM than using a simple

feature concatenation strategy. This also indicates

the contribution of the CIM in improving the saliency

detection results. Going further, there are two parts to

CIM: cross-modal feature enhancement and adaptive

feature fusion. Thus, to evaluate the contribution of

each part, we modified CIM to have only only cross-

modal feature enhancement or adaptive feature fusion,

with results denoted A2 and A3, respectively. When

comparing them to the full version of CIM, we can

see the effectiveness of the proposed CIM. Moreover,

in CIM, the features of the last layer are propagated

to the next layer to capture cross-level correlations. To

validate the effectiveness of the propagation strategy,

we removed this propagation in the CIM, with results

denoted A4, showing that the propagation strategy

does improve saliency detection results.

4.3.2 Effectiveness of MFA

In the proposed framework, the MFA is proposed

to make full use of the features learned in the

modality-specific decoder, which are then integrated

into the shared decoder to provide more multi-

modal complementary information. To validate its

effectiveness, we deleted this module in an approach

denoted B1. We also considered two other feature

fusion strategies: see Fig. 8. One provides cross-

modal feature enhancement fusion; the other is a simple

concatenation strategy. Results for the two strategies

are denoted B2 and B3. Table 5 demonstrates, by

comparing results of B1 and our full model, the

effectiveness of integrating the features learned into

the shared decoder. Comparing results of B2 and B3

with our full model, we can see that the MFA module

outperforms both other fusion strategies.
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Fig. 9 Attribute-based evaluation with respect to (a) number of salient objects (one, or multiple), (b) indoor versus outdoor

environments, and (c) lighting conditions (low-light versus sunny).

4.3.3 Effectiveness of Modality-specific

Decoders

We deleted the two modality-specific decoders, with

results shown in C1 in Table 5. Performance degrades

when not using the two parts. This indicates the

effectiveness of the modality-specific decoders, which

provide supervision signals to ensure that modality-

specific properties can be learned.

To further evaluate the effectiveness of the

combination of the two modality-specific decoders, we

added an experiment to compare the SOD results

when using the output from the shared decoder and

the combination of the two modality-specific decoders.

Results are shown in C2 of Table 5. We can see that the

shared decoder outperforms the combination of the two

modality-specific decoders, indicating that the shared

decoder can combine multi-modal shared information

and modality-specific characteristics to improve SOD

results.

4.3.4 Effects of Varying Numbers of CIMs

To investigate the effects of changing the numbers

of CIMs, we compare our full model using five CIMs

with two degraded versions, CIM1, which only applies

a CIM to the features from the last layer in the encoder

network, and CIM3, using CIMs on the features from

each of the last three layers in the encoder network.

Table 6 shows the results; our model with five CIMs

works better for most datasets.

4.4 Attribute-based Evaluation

There are several challenging factors that may affect

results from RGB-D saliency detection models, such as

the number of salient objects, indoor versus outdoor

environments, lighting conditions, and so on. Thus,

we evaluated saliency detection results under different

conditions, to show the strengths and weaknesses of

state-of-the-art models in handling these challenges.
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Tab. 6 Results for different numbers of CIMs.

NJU2K STERE DES NLPR SSD SIP

Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓
CIM1 .918 .034 .908 .039 .929 .019 .928 .022 .865 .047 .889 .046

CIM3 .920 .032 .900 .041 .935 .017 .928 .021 .857 .049 .891 .045

Ours .925 .028 .907 .037 .945 .014 .927 .021 .871 .044 .894 .043

Fig. 10 Attribute-based evaluation with respect to scale of the salient object.

4.4.1 Single vs. Multiple Objects

In this evaluation, we constructed a hybrid dataset

with 1,229 images from the NLPR [61] and SIP [21]

datasets. Results using Sα are shown in Fig. 9(a). As

can be observed, it is easier to detect a single salient

object than several. Our model outperforms other

state-of-the-art methods in locating single and multiple

objects.

4.4.2 Indoor vs. Outdoor

We evaluated the results of different RGB-D SOD

models on indoor and outdoor scenes. As DES [10]

and NLPR [61] include indoor and outdoor scenes, we

constructed a hybrid dataset collected from the two

datasets. Results are shown in Fig. 9(b). As can be

observed, many models find it harder to detect salient

objects in indoor scenes than outdoor scenes, while JL-

DCF, S2MA, UCNet, ICNet, SSF, DANet, and our

model work a little better on outdoor scenes.

4.4.3 Lighting Conditions

We carried out this evaluation on the SIP

dataset [21], with examples grouped into two categories,

sunny and low-light. Results are shown in Fig. 9(c).

All models struggle to detect salient objects in low-

light conditions, confirming that low-light negatively

impacts SOD performance.

OursDepth GTRGB

Fig. 11 Cases in which our model fails.

4.4.4 Object Scale

To characterize the scale of a salient object, we

compute the ratio r of the size of the salient region to

the whole image, and define three object scales: small,

when the r < 0.1, large, when r > 0.4, and medium

otherwise. To evaluate how different methods handle

scale variation, we constructed a hybrid dataset with

2,444 images from STERE [57], NLPR [61], SSD [106],

DES [10], and SIP [21]. Fig. 10 shows results of

13
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Tab. 7 Results for camouflaged object detection models on benchmark datasets using evaluation metrics Sα [8] and M [62]. ↑, ↓
indicate that larger or smaller is better.

CHAMELEON CAMO COD10K

Model Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓

FPN [47] 0.794 0.075 0.684 0.131 0.697 0.075

MaskRCNN [29] 0.643 0.099 0.574 0.151 0.613 0.080

PSPNet [92] 0.773 0.085 0.663 0.139 0.678 0.080

PiCANet [49] 0.769 0.085 0.609 0.156 0.649 0.090

BASNet [65] 0.687 0.118 0.618 0.159 0.634 0.105

PFANet [96] 0.679 0.144 0.659 0.172 0.636 0.128

CPD [83] 0.853 0.052 0.726 0.115 0.747 0.059

EGNet [93] 0.848 0.050 0.732 0.104 0.737 0.056

SINet [19] 0.869 0.044 0.751 0.100 0.771 0.051

DANet [98] 0.874 0.043 0.752 0.100 0.765 0.051

HDFNet [59] 0.875 0.032 0.778 0.085 0.779 0.045

SPNet (Ours) 0.895 0.027 0.795 0.082 0.797 0.042

this attribute-based evaluation with respect to the

scales of the salient objects. All methods work better

at detecting small salient objects and relatively at

detecting large salient objects. The most recent models,

JL-DCF, DANet, PGAR, and our model, obtain the

promising results.

4.5 Failures and Discussion

Our proposed SPNet shows good RGB-D saliency

detection in most cases. However, it fails to detect

salient objects in some challenging scenes such as those

with complex backgrounds and low-quality depth data.

Some failures of our model are shown in Fig. 11. In the

first row, the depth data quality is very poor, so our

model can only roughly locate the boat without fine

details. This suggests that it is helpful to enhance or

filter depth maps to improve saliency detection results.

In the second row, the annotated salient object has a

similar appearance to other objects in the scene, so it is

challenging to accurately detect the salient object. In

the third row, the object has fine details, but our model

only locates the main regions without the fine details.

There is still considerable room to improve our model

to handle such scenes with fine structures.

4.6 Application to RGB-D Camouflaged

Object Detection

SPNet was originally designed for the RGB-D SOD

task, which can be easily extended to other related

RGB-D tasks, e.g., RGB-D based camouflaged object

detection (COD). The aim of COD is to identify objects

that are ‘seamlessly’ embedded in their background

surroundings. This is a very challenging task due

to the high intrinsic similarities between the target

object and the background [19, 45, 73]. Recent

research [88] suggests that depth can provide useful

spatial information to improve COD results. Thus, we

extended SPNet to the RGB-D COD task.

We conducted this experiment on three public

benchmark datasets for camouflaged object detection:

(i) CHAMELEON [19] consisting of 76 camouflaged

images, (ii) CAMO [39], with 1, 250 images (1, 000

for training, 250 for testing) in 8 categories, and (iii)

COD10K [19], with 5, 066 camouflaged images (3, 040

for training, 2, 026 for testing) in 5 super-classes and

69 sub-classes. Following the same setting in [20], we

divided the training and testing sets and then trained

our model on the training set.

We compare our method to other existing COD

models, including FPN [47], MaskRCNN [29],

PSPNet [92], PiCANet [49], BASNet [65], PFANet [96],

CPD [83], EGNet [93], and SINet [20] (results are

from [20]). Since there are few works for RGB-

D camouflaged object detection, we also compared

two recent RGB-D salient object detection methods,

DANet [98], and HDFNet [59], in this experiment. We

re-trained the two RGB-D SOD models and our model

using RGB and depth images.

Table 7 shows quantitative results for three public

datasets. Our model performs better than the other

14
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RGB GT Depth SINet DANet HDFNet SPNet

Fig. 12 COD results of our SPNet and three state-of-the-art COD methods: SINet [20], DANet [98], and HDFNet [59].

COD methods. Our model and the two RGB-D

COD methods use depth cues, and work better than

other methods which do not, indicating that depth

cues can provide spatial information to improve COD

results. Fig. 12 shows qualitative results for different

COD methods. Compared to other COD models,

our SPNetachieves better results by detecting more

accurate boundaries of camouflaged objects.

5 Conclusions

In this paper, we have presented a novel RGB-D

salient object detection framework, SPNet. Unlike

most existing RGB-D SOD methods, which focus

on learning shared representations, SPNetnot only

explores shared cross-modal information but also

uses modality-specific characteristics to improve SOD

results. To learn the shared representations for the two

modalities, we introduce a cross-enhanced integration

module (CIM) to fuse the cross-modal features, and the

output of each CIM is propagated to the next layer to

explore rich cross-level information. We further adopt

a multi-modal feature aggregation (MFA) module

to integrate the learned modality-specific features to

enhance the complementary multi-modal information.

Extensive results on benchmark datasets show the

effectiveness of our model in comparison to other

state-of-the-art RGB-D SOD methods. Moreover,

we have thoroughly validated the effectiveness of key

components of our framework, and an attribute-based

evaluation was conducted to study the ability of many

cutting-edge RGB-D SOD approaches to meet different

challenges. Finally, we extended SPNet to the recently

proposed RGB-D camouflaged object detection task,

and its effectiveness was verified.
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