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Abstract Interactive image segmentation (IIS) has

served as a vital technique in obtaining pixel-level

annotations. In many cases, the target objects share

similar semantics, such as semantic segmentation,

instance segmentation, and human parsing tasks.

The previous object representations, user interactions,

and prediction masks can provide proper priors for

the current annotation along with the annotating.

However, IIS methods neglect the connection and these

newly obtained cues. In this paper, we formulate a

sequential interactive image segmentation (SIIS) task

for minimizing user interaction cost on sequence data;

meanwhile, we bring a practical solution with two

pertinent designs. The first is a novel interaction

mode. When annotating a new sample, our method can

automatically propose an initial click proposal based

on previous annotating. It dramatically helps reduce

the interaction burden on users. The second is a

densely online optimization strategy. To reduce the

semantic gap in annotating specific targets, we further

optimize the model with the dense supervision from

previously labeled samples. Experiments demonstrate

the effectiveness of our methods and the importance of

the proposed SIIS task.

Keywords Interactive Segmentation, User Interaction,

Object Segmentation.

1 Introduction

In the field of image editing and data annotating,

it is crucial to obtain a high-quality pixel-level mask

with minimal labor and time costs. Therefore, the
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Fig. 1 Motivation of sequential interactive image segmentation

(SIIS). In the process of annotating, the previous object

representations, user interactions, and final prediction masks can

provide assistance for the current interaction and prediction.

community has invested a lot of attention in interactive

image segmentation (IIS) technology, by which users

participate in the segmentation process and provide

interactive information iteratively to get good masks.

To reduce the burden of users, researches on IIS mainly

focus on two principles. The first is to carefully

design the interaction mode [20, 27, 37, 39, 49, 52], so

that users can provide more information with minimal

interaction cost. The second is to carefully design

the back-end algorithm [21, 29, 31, 34, 36, 38, 42] to

maximize the use of information provided by users.

In practice, users often annotate multiple related

images, such as images with the same categories in a

semantic segmentation task and the same substructure

in the human/scene parsing task. Meanwhile, in the

inference stage, the IIS model will obtain an almost

exact mask, unlike the uncertain one in most computer

vision tasks. All the above observations enlighten us

to think whether we can use the previous annotation

information to assist the current one, as illustrated

in Fig. 1. However, the idea is largely neglected

by current IIS methods that deal with each image

independently without considering the useful priors in

previous annotations. A recent work [26] first tried

to regard interaction segmentation as a sequence task

and optimize parameters through user clicks. This
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work only takes use of the click information and

adopts the incomplete mask as regularization. We

have taken a step further on its basis and propose

exploring the interaction logic level in this sequence

task. Moreover, we propose obtaining an accurate mask

in the particular task to optimize the parameters better.

In this paper, focusing on the two investigating

principles (interaction mode and back-end algorithm),

we propose a systematic solution with two

corresponding modules, i.e., initial click proposal

and online purification optimization, for the SIIS

problem. In terms of interaction mode, we design

a new interaction logic that greatly reduces user

interaction burden with initial click proposal (ICP),

as shown in Fig. 2 and Fig. 3. Specifically, ICP

maintains a bank of initial click embeddings for a

semantic target. When dealing with a new target,

through similarity measurement, ICP will propose an

initial click on the most likely position serving as a

real interaction. If adopting the proposal, users can

further interact for refinement; otherwise, directly

correct the proposal with a new click. In terms of the

back-end algorithm, we propose an online purification

optimization (OPO) strategy for sequential interactive

segmentation based on previous interactive results, as

shown in Fig. 2. OPO keeps a group of parameters

for each semantic target for narrowing the semantic

gap. With increased user annotations, our pipeline will

become more efficient for specific semantic targets.

Our contributions can be summarized as follows:

I The paper formulates the sequential interactive

image segmentation (SIIS) task with two

investigating principles, interaction mode and

back-end algorithm.

I To improve the interaction efficiency, we design the

initial click proposal (ICP) for SIIS to recommend

the initial click instead of the real user input.

I To better utilize interaction cues, we raise the

online purification optimization (OPO) to adapt

the model to a specific semantic target using

previous annotations.

2 Related Work

2.1 Image Interactive Segmentation

The field of interactive image segmentation has been

explored for nearly two decades. Unlike the automatic

segmentation like semantic segmentation [14],

the present methods gradually consider human

articipation [53]. Interactive segmentation is a typical

example. It aims to segment the specified object

through the user and mainly focuses on two study

views. 1) interaction mode. The research on interaction

mode aims to make users provide the maximum

information with the least interaction. Traditional

methods mainly employ scribbles [3, 16, 23, 25, 45, 47]

to denote background and foreground regions. In

addition, many variants, such as cross-instance

scribble [48], error-tolerant scribble [2], bounding

box [41], and automatic border lasso [28, 40], are

studied by the community. Recently, deep learning

technology brings stronger perception, which makes

lighter interaction modes possible. For example, user

can directly click on the target object to select object

and on background to erase error predictions [50].

Some other lighter modes, such as extreme points [39]

and boundary clicks [20, 27], are investigated as well.

As a novel way, the IOG [52] method, which combines

the outside bounding box and an inside click, has

also achieved excellent results. 2) back-end algorithm.

The research on algorithm logic aims to maximize

the use of interactive information provided by users

for accurate prediction. Traditional methods are

mainly based on color features [5, 6, 15, 24]. Recently,

methods based on convolutional neural network [50],

recurrent neural network [1, 7], graph convolutional

network [35], reinforcement learning [43] spring up in

IIS task. The various architectures are also mentioned,

e.g., regional refinement block [30] and two-stream

fusion [19]. Some researches [29, 31] try to solve

the ambiguity in interactive segmentation. Besides,

some important cues about interactive segmentation

also receive attention, e.g., training strategy [36],

interaction map [4], and user intent [33, 34, 38].

2.2 Interactive Segmentation with Online

Learning

Online learning has been used in many segmentation-

related works [8, 51]. For the IIS task, user interactions

can be used as a reference for prediction and as a

supervision signal for fine-tuning models. BRS [21] first

takes the idea into individual interactive segmentation.

According to its assumption, the confidence value of

the model’s prediction at the user’s click may not be

high enough. Fortunately, the uncertainty brings the

possibility for model optimization. BRS takes the

mispredicted clicked pixels as punishment to fine-tune

the input distance map, which is more specialized for

the target object and ensures that the prediction can

cover the interaction points well. f-BRS [42] improves

the BRS by back-propagating the part of the model

instead of the whole one. In this way, it makes the
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Fig. 2 The overall pipeline of the proposed sequential interactive segmentation method. ICP is the initial click proposal, detailed

in Sec. 3.2. It aims to propose an initial click proposal for reducing user burden automatically. OPO is the online purification

optimization, detailed in Sec. 3.3. It continuously optimizes specialized parameters for the semantic target according to the previous

annotation masks to ensure a semantic adaptive proposal space and more efficient segmentation. The symbol © means a two

convolutional layers. The red point “•” and blue point “•” mean the click in foreground and background, and the purple one “•”
indicates the recommended click.

online training efficient again. Recently, Kontogianni

et al. [26] preliminarily attempts to introduce

the clicked position supervision to image sequence

segmentation, which achieves promising results. It

employs sparse supervision with only several positive

and negative clicks and uses these incomplete masks

for the regularization constraint in sparse optimization.

However, the particularity of interactive segmentation

lies in that the user will get complete masks after

interacting with previous images. Our method is a

step further and directly uses all previous predictions as

dense supervision instead of several user clicks. Based

on this, we propose OPO, which utilizes the previous

final masks to assist the subsequent pictures.

3 Proposed Method

In this section, we introduce the proposed method

in three parts. In Sec. 3.1, we introduce our modified

DeepLab v3+ [9], which is specially designed for

the sequential interactive segmentation. In Sec. 3.2,

we describe the Initial Click Proposal (ICP), which

provides the users the initial click proposal based on

previous initial clicks in the image sequence. In Sec. 3.3,

we propose the Online Purification Optimization

(OPO), which optimizes the purification parameters in

the modified DeepLab v3+ with online training based

on the previous annotation masks.

3.1 Network Architecture

Interactive segmentation is an essentially particular

task of object segmentation. For most previous click-

based interactive segmentation works [26, 31, 34, 36,

42], they usually adopt DeepLab v3+ [9] as the

segmentation network with 5 channels (the RGB image

+ positive/negative click maps) as input. The network

architecture works well most time. However, there

are two problems for the original architecture in the

sequential interactive segmentation. Firstly, we need

to utilize the feature correlation within images of a

specific category. The traditional 5-channel-input does

not meet our requirements because the annotation

input will disturb the semantic feature. In other

words, the correlation between interaction points will

be significantly enhanced, and the semantic similarity

will dramatically disappear. Secondly, in sequential

interactive segmentation, the parameters need to be

optimized continuously. We need to save the specific

parameters for each category. Optimizing global

parameters will significantly increase the burden of

hardware storage (such as memory or video memory)

in the real application environment. For the above

reasons, we split the original architecture into two

parts, the feature extraction part, and the interactive

segmentation part, as shown in Fig. 2. We call it

modified DeepLab v3+. For feature extraction, we

also adopt ResNet-101 [18] with the output stride of
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Fig. 3 Details of the initial click proposal (ICP). ICP proposes an initial click based on the confidence map, which is a mean of

multiple similarity maps measured by the image feature and all embeddings in the bank from previous initial clicks. The proposal

will act as a real click from users and conduct an initial segmentation. When the proposal is correct, the user can further refine it

by providing more interactions. In the multi-target scene, the previous masks will be erased from the confidence map so that ICP

can propose a new initial click for the next target.

16 as backbone. The features of the last four layers are

with channels of {256, 512, 1024, 2048}. These features

are fed into a simple purification module containing

a few 1×1 convolutions to reduce and purify the

feature for the specific category. The channel-reduced

features are defined as {R1,R2,R3,R4}, with channels

of {32, 64, 128, 256}, which is only 1
8 of the original

ones. With the annotation guidance maps (click maps)

and these channel-reduced features, we conduct a Mini-

DeepLab v3+ module, whose architecture is similar

to the original one. For the encoder module, the

input is the annotation guidance map E0, which is two

Gaussian maps based on points. The input features

are gradually combined with channel-reduced features,

which is formulated as:

Ei = C (Ri ⊕D (Ei−1)) , i ∈ {1, . . . , 4}, (1)

where D(·) means down-sampling, ⊕ means feature

concatenation, and the C means two convolutional

layers with the kernel size as 3×3. For the output

E4 of the mini-encoder module, it will be fed into

a Mini-ASPP module. Different from the original

one, the down-sampling is only 1
4 instead of 1

8 . The

output with 64 channels of the Mini-ASPP will finally

be concatenated by the E1 and convoluted to the

final predictions. Although the modified DeepLab

v3+ has some additional parts based on the original

version, this network is lighter than the original one

due to reduced channels. Because of the separation of

feature extraction and interactive segmentation, more

sequential operations can be implemented, and we can

better explore the sequential interactive segmentation,

like the ICP and OPO.

3.2 Initial Click Proposal

In sequential interactive segmentation, how to reduce

the burden of users in interaction logic is an important

problem. We propose the initial click proposal (ICP) to

maintain a click bank that records the feature vectors

on the pixels where previous initial clicks are located for

each category. It is initialized as an empty bank. When

the user intends to do interactive segmentation for a

specific category, the similarity between the feature

vectors of all pixels and those of previous initial clicks in

this bank will be calculated. For initial segmentation,

the most similar pixel will be marked as a initial click

proposal. If the user is not satisfied with the initial

click proposal or the proposal is with the mistake, the

user can select the initial point manually and continue

the following interactive segmentation. After the user

selects the initial click manually or adopts the initial

click proposal, which is correct, the corresponding

feature vector will be stored in the click bank.

How to choose the initial click proposal? We utilize

the cosine similarity (shown as φ in Equ. (2)) to find

the recommended point. Suppose that the target image

is T and the image features we choose are defined as

F. F(p) means the feature vector in the corresponding

pixel p. Then calculation for the recommended point p̂

is formulated as:

p̂ = arg max
pn∈(T −I)

∑n−1
i=1 φ (F(pn),F(pi))

n− 1
, (2)

φ (a,b) =
a · b
‖a‖‖b‖

, (3)

where pn mean the recommended point, p1 . . . pn−1

means the previous initial clicks, and the I means the

ignore mask, which is initially set to ∅ and used for

the segmentation of multiple instances. In practice,

we can do a mean filtering on the confidence map

before selecting the maximum point to prevent the

occasional extreme points. We choose the last layer R4

to generate channel-reduced features for the initial click
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proposal. It will provide more semantic information.

The ablation study about choosing features of different

layers is also shown in Tab. 3.

Initial click proposal, in real scenarios, can be

implemented in different interactions. For example,

for the recommended point that users are not satisfied

with, users can re-select the initial click through the

middle mouse button, and continue to use the left

and right mouse buttons for interactive segmentation.

For multi-semantic annotation, ICP will maintain a

click bank of initial clicks for each category. When

users select the semantic tags to be annotated, the

corresponding initial click proposal will be generated

and shown. If multiple instances of the same categories

are in an image, ICP can also recommend numerous

instances. As shown in the Fig. 3, every time the

user has finished an annotation A for instance, the

ignore mask I will be updated to I ∪A. The following

recommended points will not be repeated with the

previous ones.

3.3 Online Purification Optimization

As the first exploration of online training based on

previous annotation results, we adopt the most concise

training settings, which is similar to that when training

the baseline model. The core difference is that for

the training of the baseline model, the number of

foreground and background points is within [1, 10] and

[0, 10], respectively, to simulate user operations better.

For the online training, they are within [1, 5] and

[0, 5] to reduce the impact of interaction points. The

batch size is set to 8, and we train for four iterations

after a complete interactive segmentation. The images

and instances are selected from all the annotated

ones. In the process of online training, we also use

stochastic gradient descent for the optimization, and

the learning rate is fixed to 5 × 10−3. Different from

other online learning methods, we only optimize a small

set of the parameters in the purification module, which

is called online purification optimization, as shown

in Fig. 2. The purification module is composed of

multiple 1×1 convolutions, and its parameters play

the role of extracting the original features. For the

sequential interactive segmentation, the features that

each category depends on are often different. Through

this purification module, the features are regrouped

and integrated, and the parameters of the purification

module are changed through online learning. It is

called a purification module because it is conducive to

extracting parameters for specific categories from the

original complex image features. Before the module,

the features are impure because they represent all kinds

of image features. After this module, the reduced

feature can better represent this specific kind of object.

As shown in Fig. 6, the segmentation performance of

the initial clicks reflects the parameters that have fit

the corresponding characteristics of the category.

Every time a user completes an instance

segmentation, a round of online learning of that

category will be performed in real scenarios. For each

category, the segmentation system will save a set of

parameters of the purification module. Because the

parameters are extremely small, as shown in Tab. 7,

the storage space required is small, and it will not

cause a burden. When users select the semantic tags

to be annotated, the corresponding parameters will be

adopted. The task using online learning usually faces

the problem that it is challenging to run in real-time.

But the task of interactive segmentation does not have

this kind of problem at all. In most cases, the time

used for thinking is much longer than that used for

computer processing during interactive segmentation.

So as long as you take a specific interval δ, and use

the model trained by the first (n − δ) samples when

segmenting the n th object, you can fully achieve the

effect of simultaneous user interactions. Generally, as

long as δ is greater than 1, it can meet the real-time

requirement.

4 Experiments

4.1 Settings

Datasets. Augmented PASCAL VOC [11, 17], a

widely used semantic segmentation dataset across 20

categories. Like some previous works, we use the

training set (25832 instances) for training and the

validation set (3427 instances) for testing. COCO [32],

a large-scale dataset provided by Microsoft. We

take three settings for testing. For comparison with

individual interactive segmentation, we adopt the

same setting in [34]. For comparison with sequential

interactive segmentation, we adopt the same setting

in [26], including COCO (Unseen 6k), COCO (Donut,

Bench, Umbrella, Bed). CoSOD3k [12, 13] is a dataset

for co-salient object detection which has abundant

categories. We selected the whole set with 4874

instances across 160 categories for the test. CoCA [54]

is another dataset for co-salient object detection which

has special categories. These categories are not

typical and appear in other datasets, ideal for studying

independent semantic tasks. We selected the whole

set with 2143 instances across 80 special categories
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# ICP OPO

PASCAL COCO CoSOD3k CoCA Fashionpedia LeedsButterfly

@85% @90% @85% @90% @85% @90% @85% @90% @85% @90% @85% @90%

(a) 3.18 4.07 5.81 8.25 4.86 7.24 6.81 9.61 13.87 16.47 2.16 2.89

(b) X 2.82 3.70 5.40 7.85 4.34 6.70 6.50 9.32 13.68 16.30 1.37 2.07

(c) X 3.11 3.98 5.36 7.88 4.47 6.82 5.88 8.76 11.34 14.29 1.25 1.48

(d) X X 2.74 3.60 4.98 7.51 3.93 6.29 5.57 8.48 11.17 14.14 0.29 0.52

Tab. 1 Core ablation study about NoC metric (@85% and @90%) on all six datasets with initial click proposal (ICP) and online

purification optimization (OPO) proposed in our pipeline. The lower value means the better performance.

for testing. Fashionpedia [22] is a dataset about

fashion images. We use the 8781 part masks across 46

categories in the validation set for testing. We adopt

it for exploring segmenting object parts in sequential

interactive segmentation. LeedsButterfly [46], a dataset

that contains 832 images of butterflies.

Metrics. For evaluating the interactive segmentation,

we take the same metric like that in most interactive

segmentation works. A robot user is adopted, selecting

the next point in the center of the largest error

region. The mean Number of Clicks (NoC) indicates

the average number of clicks in the interactive process

until each instance reaches the specified Intersection

over Union (IoU) score (represented as @XX%). The

lower value means the better performance. It is worth

mentioning that the value of NoC when using online

training is the mean value of 5 experiments.

Implementation Details. We take ResNet-101 [18]

pre-trained on ImageNet [10] as a backbone. We set

the batch size to 8 and train for 30 epochs. We use the

binary cross entropy loss function in baseline training.

We adopt the exponential learning rate decay strategy

with the initial learning rate of 7 × 10−3 and gamma

of 0.95 for each epoch. For parameters optimization,

we take stochastic gradient descent with a momentum

of 0.9 and weight decay of 5 × 10−4. We crop and

resize images to 384× 384 with random flip and random

clip augmentation. For annotation simulation, we use

a similar strategy in [34] and take the same iterative

training strategy in [36]. All the experiments are

implemented with the PyTorch [44] framework and run

on a single NVIDIA Titan XP GPU.

4.2 Ablation Study & Discussion

We have conducted sufficient ablation experiments

with our core issues on the six selected datasets. Tab. 1

shows the NoC metric on different target thresholds

on all datasets. Observing from the overall data, no

matter which dataset, no matter which target threshold

(@85% or 90%), our ICP and OPO can play a role

in improving the performance, which fully proves the

effectiveness of the proposed methods. This section will

analyze the effects of the two core modules, ICP and

OPO, on different types of datasets, taking the data

with @85% as an example.

For the validation dataset in PASCAL, whose

categories are the same as the training set, the

parameters in the purification module have been fully

fitted to these seen categories. We can find that

the ICP is highly effective, with 11.37% improvement.

However, the improvement is quite limited with OPO.

This is also reasonable because the fully fitted features

are more suitable for providing the click proposal,

while it is difficult to improve these parameters

through online training with limited samples with

seen categories. COCO and CoSOD3k have a small

number of categories that overlap with the training

set, and the classes in CoCA are unique. These

three datasets are rich in categories, but the number

of each class is limited, The improvement is 7.04%,

10.61%, 4.67% with ICP, and 7.70%, 7.97%, 13.66%

with OPO, respectively. Combining ICP and OPO, the

performance improvement can reach 14.32%, 19.09%,

and 18.21%. These data fully reflect that our method

can bring noticeable improvement even if there are few

samples for each category. Fashionpedia is the most

difficult because the segmentation targets are fashion

parts, while the training samples are all instances,

especially a whole human body. The improvement is

only 1.33% with ICP, but it can achieve 18.25% with

OPO. We speculate that this phenomenon is that the

neural network has a high probability of treating the

human body as a unified category so that the feature

similarity will cause mismatches for these partial

clothing, accessories, etc. But parameter optimization

is still helpful for improving the performance of such

part objects. For the LeedsButterfly, which only

contains several butterflies, the improvement brought

by ICP and OPO is significant. The OPO brings

42.04% improvement compared to baseline. For the

ICP equipped with the baseline, the improvement

6
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Name Params (M) FLOPs (G) SPC (s)

DeepLab v3+ 59.345 50.149 0.024

Ours 45.743 32.364 0.016

Tab. 2 Network comparison between our modified DeepLab

v3+ and the original version. (See Q1)

Dataset R1 R2 R3 R4 R-MS

CoSOD3k 7.00 7.04 6.84 6.70 6.64

CoCA 9.43 9.46 9.37 9.32 9.23

Tab. 3 The NoC (@90%) when using features in different

layers in the backbone network for ICP module. “R-MS” means

to use multi-scale features.The lower value means the better

performance. (See Q2)

reaches 36.62%, and the ∆NoC achieves 0.79. After

adding the OPO, the advance of ICP is more significant,

with 76.52%, and the ∆NoC achieves 0.96, whose

maximum is 1.0. It reflects that the features obtained

after parameters optimization are more suitable for the

initial click proposal. In other words, the OPO can

assist ICP to get better performance. The NoC metric

is only 0.29 with ICP and OPO. That means that

this framework can complete satisfactory annotations

under approximately semi-automatic interaction, which

significantly reduces the burden on annotators.

Here are some additional ablation experiments and

discussions with some questions:

Q1: What is the difference between this network

and the original DeepLab v3+? Tab. 2 shows

the primary metrics of the two network architectures,

including the number of parameters (Params), the

floating-point operations per second (FLOPs), and

seconds per click (SPC). We can see that the modified

one is relatively lighter. It is worth mentioning that

this does not mean that our network is better than the

original one, but because of the unique design of our

ICP and OPO, we have to adopt such a change.

Q2: How about selecting features in another

layer of the backbone network for ICP module?

Tab. 3 explores this situation when using features in

other layers of the purification module. We can find

that the performance is best with the R4 features, and

the next is R3, R1, R2. This is consistent with our

intuition; using the highest-level feature information is

more conducive to the initial click proposal. We also

carry out an additional experiment with multi-scale

features for initial click proposal. We can find that

the performance can be further improved.

# Setting C1 C2 C3 C4 All

(a) Provide Initial Click 1.62 1.64 1.28 1.48 1.51

(b)
Judge Positive Sample 0.48 0.46 0.47 0.43 0.46

Judge Negative Sample 0.58 0.56 0.54 0.55 0.56

Tab. 4 The user study of the ICP module. (See Q3)

Dataset Ours Full Foreground

CoSOD3k 4.34 / 6.70 4.77 / 7.15 4.50 / 6.86

CoCA 6.50 / 9.32 6.77 / 9.56 6.55 / 9.38

Tab. 5 The NoC (@85%/@90%) when adopting a random click

from full image or the foreground in the ICP module.The lower

value means the better performance. (See Q4)

Q3: Can the ICP really save time for users to

reduce interaction burdon? As shown in Tab. 4,

we conduct a user study for the proposed ICP module

to verify its effectiveness. 40 images with 4 categories

in COCO [26, 32] dataset are selected as the study set.

Half of the data provide the correct recommendation

point for each category, and the other half is the

opposite. We invited 20 volunteers for our user study.

They were asked to complete two tests. (a) One is to

find and click on the corresponding category of objects

in the provided random pictures. (b) The other is

to judge whether the recommendation point is correct

with provided random pictures and corresponding

recommendation point. From the table, We can find

that the time to judge the wrong recommendation point

is more than to judge the correct one. Both are less

than the time to click on the object directly. This

reflects that the ICP module can save users’ interaction

time in practical applications.

Q4: How does the quality of initial clicks

affect the final segmentation? We carry out

additional experiments for initial click proposals with

random clicks. We choose two random strategies for

comparison. One is to select the random click from

the full image. Another is to replace the initial click

proposal with a random point on the object of this

category when the proposal is correct. Results of

the mean value from five experiments are shown in

Tab. 5. We find that the performance will decrease

if the random click is selected in the full image or

the foreground. Because the ICP module is mainly

used to locate objects of this category, the performance

degradation is relatively minor when selecting from the

foreground compared to the full image.
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Method
PASCAL COCO CoSOD3k CoCA Fashionpedia LeedsButterfly

@85% @85% @90% @90% @85% @90%

CVPR - DOS [50] 6.88 9.07 11.04 13.04 16.27 5.32

ICCV - RIS [30] 5.12 N/A N/A N/A N/A N/A

CVPR - LD [29] N/A 7.86 8.73 11.94 16.41 3.66

BMVC - ITIS [36] 3.80 6.51 8.67 11.42 16.77 3.43

ICCV - MS [31] 3.88 N/A N/A N/A N/A N/A

CVPR - BRS [21] N/A 5.16 N/A N/A N/A N/A

CVPR - CMG [38] 3.62 5.90 N/A N/A N/A N/A

CVPR - FCA [34] 2.98 5.28 6.31 9.51 13.31 2.44

CVPR - f-BRS [42] N/A 5.75 6.93 9.46 14.40 2.86

Ours 2.74 4.98 6.29 8.48 11.17 0.52

Tab. 6 Comparison of the NoC metric between our solution and other methods. The lower value means the better performance.

Name Params (M) SPB (s) CoSOD3k CoCA

Purification 0.697 0.098 6.82 8.76

Global 45.743 0.277 6.67 8.38

Tab. 7 Comparison between optimizing purification parameters

and global parameters. The last two columns is NoC@90%. The

lower value means the better performance.. (See Q5)

Q5: Why do we only optimize the purification

parameters? Tab. 7 compares optimizing purification

parameters with global parameters. We find that the

purification module’s parameter amount (Params) is

tiny compared to the whole network, even less than 2%

of it. However, the performance gap is not significant.

For sequential interactive segmentation, it is necessary

to save unique parameters for each category. Such a

small parameter amount is undoubtedly appropriate.

The optimization speed, indicated by Second Per

Batch, brought by a small number of parameters is

faster, which is also helpful to the task.

Q6: Will the performance improves with the

increase of online training data? Fig. 4 (a)

illustrates the NoC metric trends on LeedsButterfly

when stopping online training after a specified

number (abscissa) of samples. With the increase of

online training data, the performance is continuously

improving, and it reaches a stable state later.

Q7: Should the method require to access the

whole training dataset during online learning?

The method does not need to access the whole training

dataset. We can set a memory bank, and the training

samples will always be chosen in this bank. Fig. 4

(b) illustrates the NoC metric trends on LeedsButterfly

when adopting the different sizes of memory banks. We

Method Donut Bench Umbrella Bed Unseen 6k

CA [26] 6.50 13.30 10.20 5.00 9.30

Ours 5.65 12.56 9.63 4.56 9.18

Tab. 8 Comparison of the NoC@85% metric between our

solution for sequential interactive segmentation with another

sequence-based work [26] on the same five sets of COCO dataset.

The lower value means the better performance.
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Fig. 4 Performance trends when increasing the training data

(a) and the memory size of online training (b). The lower value

means the better performance. (See Q6, Q7)

can see that the performance will be affected if the bank

size is too small. However, after a specific size, it is

stable and suitable for practical applications.

4.3 Comparison with State-of-the-Arts

In Tab. 6 and Fig. 6, we compare the quantitative

and qualitative results between our method and other

state-of-the-arts. Here, we will further elaborate on

the inference process of “B+OPO”. When the user

labels an image, the OPO module will switch to the

specific parameters of the working category. Users will

constantly provide a foreground and background clicks

for annotation. After each interaction, the information

of the image and clicks will be input into our network

to generate the corresponding mask. According to

the generated mask, users can continue to add the

8
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Fig. 5 The qualitative results of the ICP with the click proposal, confidence map, and prediction.

LD[29] FCA[34] f-BRS[42] B B+OPO GT

Fig. 6 The qualitative results of the OPO compared to other methods and the baseline (B).

next click for refinement until the mask meets users’

needs. The online training phase will be carried out

when a new image is annotated completely. The

newly annotated and some previous images will be

randomly chosen for an online training step. As the

previously annotated masks have satisfied the user,

they can naturally serve as ground truth labels for

supervision. We random simulate clicks in these

images according to corresponding annotated masks.

Then images and these clicks will be fed into the

network like the standard training phase and generate

the predictions for optimization. We employ binary

cross-entropy loss between predictions and previously

annotated masks. It is worth mentioning that, during

online training, only the parameters of the OPO module

will be optimized through stochastic gradient descent,

while the parameters of other modules are fixed. These

parameters will become more suitable for this category.

As the process continues, the performance of labeling

certain objects will become better and better.

Comparison with Individual IIS. Tab. 6 shows the

NoC metric of IIS methods in these datasets with rich

categories. Due to the different emphasis of individual

and sequential interactive segmentation, we provide the

performance only for an intuitive comparison. These

methods are carefully designed and focus on IIS. Our

method mainly addresses the problem of sequential

interactive segmentation and makes some modifications

to the basic network. Its performance is comparable

to or even surpasses these cutting-edge methods. It

reflects that regarding interactive segmentation as a

sequential process is beneficial.

Comparison with Sequential IIS. As shown in

Tab. 8, we also compare the only state-of-the-

art method [26] related to sequential interactive

segmentation. This method utilizes correction clicks for

online training, and our approach goes a step further on

it and can achieve better results. Because our method

focuses more on semantic objects, we compare most

semantic data for our experiments. Through more

9
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dense supervision, we make the model more sensitive

to this category of objects, so as to perform better.

Qualitative Results. Fig. 5 and Fig. 6 show

some results of the proposed methods. From Fig. 5,

we can find that the initial click proposals are

precisely located in the interior of objects with different

categories, such as animals and vehicles, which can

reduce the interaction burden on users. Fig. 6 shows

the segmentation results compared to the baseline

and other methods with 1, 2, and 3 clicks. With

the optimized parameters, our method can get more

accurate results at the same number of interaction

points, whether it’s an instance (the first three rows)

or the object part (the fourth row). This can also be

beneficial for users to segment the target from the scene

with multiple instances (3rd row).

5 Conclusion

In this paper, we formulate the task of sequential

image interactive segmentation (SIIS). To solve SIIS,

we systematically explore it from the views of

interaction mode and back-end algorithm. Specifically,

for the interaction logic, we design the initial click

proposal (ICP), which utilizes the previous semantic

embeddings of the target object to recommend

an initial click proposal serving as the real-input

one for the current annotation. We put forward

the online purification optimization (OPO) for the

algorithm logic, which fine-tunes model parameters to

a target category using previous accurate annotations.

Extensive experiments prove the importance of

sequential image interactive segmentation and the

effectiveness of our method.
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