UC-Net:不确定性启发的基于条件变分自动编码器的 RGB-D 显著性检测

张静^{1,4,5} 范登平^{2,6,*} 戴玉超³ Saeed Anwar^{1,5} Fatemeh Sadat Saleh^{1,4} 张同¹ Nick Barnes¹ ¹ 澳洲国立大学² 南开大学计算机学院³ 西北工业大学⁴ ACRV⁵ Data61⁶ IIAI

摘要

本文提出了首个通过数据标注过程进行学习,并 将不确定性用于 RGB-D 显著性检测的框架。现有的 RGB-D 显著性检测方法将显著性检测任务视为点估计 问题,并按照确定的学习流程生成单个显著性图。受显 著性数据集标注过程的启发,本文提出了基于条件变 分自动编码器的 RGB-D 显著性检测概率网络来模拟 人类在图片标注时的不确定性,并通过在隐空间中采样 的方式为每张输入图像生成多张显著性图。通过提出的 "显著性一致"模型,本文可以将多张显著性图合并成 一张准确的显著性图。在 6 个具有挑战的基准数据集上 对 18 个有竞争力的算法进行定量和定性评估,证明本 文方法在学习显著性图分布方面的有效性。代码和结果 详见: https://github.com/JingZhang617/UCNet¹。

1. 引言

目标级视觉显著性检测目的是将背景中最引人注 意的显著性目标分离出来 [26, 2, 55, 63, 37, 28, 62]。最 近,由于深度信息在人类视觉系统中的重要性以及深 度传感技术的普及,通过 RGB-D 图像进行的视觉显著 性检测引起人们广泛关注 [41, 64]。给定一对 RGB-D 图像,RGB-D 显著性检测的任务旨在通过探索彩色图 像和深层数据之间的额外信息来预测并生成显著性图。

事实上, RGB-D 显著性检测是使用相应的基准数 据集提供的显著性真值图来训练一个深度神经网络, 其 中显著性真值图来自人类共识或数据集创建者 [17]。在 大规模 RGB-D 数据集的基础上,基于深度卷积神经网

图 1. 提供了真值图与 UC-Net 预测的显著性图的比较。具有 单个显著对象的图像(第一行),可以产生一致的预测结果。 当存在多个显著物体时,本文方法可以得到不同的预测(第 二行)。

络的模型 [20, 41, 6, 24] 在学习从 RGB-D 图像对映射 到其相应的显著性真值图方面取得了重大进展。考虑 到当前 RGB-D 显著性检测的进展,本文认为该模式未 能捕捉到显著性真值图标注时的不确定性。

人类视觉感知研究 [32] 表明,视觉显著性检测在 某种程度上具有主观性。每个人在标注显著性图时可 能都有其特定的偏好 (之前在特定用户显著性检测 [25] 中已经讨论过)。现有的 RGB-D 显著性检测方法将显 著性检测作为点估计问题,并按照既定的学习流程为 每个输入图像生成单个显著性图,这种方式无法捕捉 显著性的随机特征,且可能生成一个有偏的显著性模 型,如图1第二行所示。本文提出的网络旨在研究可以 产生多个预测(分布估计)的网络,从而反映出显著性 的"主观性"的特性。受到人类感知的不确定性启发, 本文提出了一个基于条件变分自动编码器 [50] (CVAE) 的 RGB-D 显著性检测模型 UC-Net。它通过将输出空 间的分布建模为一个生成模型,并以输入的 RGB-D 图 像为条件来考虑标注中的人为不确定性,从而产生多 个显著性预测。

^{*}通讯作者: 范登平 (dengpfan@gmail.com)

¹本文为 CVPR2020 论文 [61] 的中文翻译版。

然而,在应用概率框架之前还存在一个问题,即现 有的 RGB-D 基准数据集通常只为每对 RGB-D 图像提 供一个显著性真值图。为了得到多样化和精确的预测², 本文遵循方向转移理论 [25],采用了"躲藏和发现"原 理 [49],通过迭代将 RGB 图像中的显著前景隐藏并测 试,迫使深层网络学习具有多样性的显著性图。通过迭 代隐藏策略为每对输入的 RGB-D 图像生成多个显著 性映射,反映了人类标注的多样性/不确定性。

此外, RGB-D 显著性数据集中的深度数据可能有 噪声,并且 RGB 图像和深度信息的直接融合可能会让 网络为适应噪声而不堪重负。针对深度噪声问题,本文 提出了深度修正网络作为辅助元件来产生具有丰富语 义和几何信息的深度图。本文还引入了显著性一致模 块来模拟生成显著性真值的多数投票机制。

本文的主要贡献是: 1) 提出了 RGB-D 显著性预测条件概率模型, 该模型可以产生不同的显著性预测 而非单一的显著性图; 2) 通过显著性一致模块提供一种能更好地模拟显著性检测工作的机制; 3) 提出深度 修正网络来减少深度数据中固有的噪声; 4) 在 6 个 RGB-D 显著性检测基准数据集上的大量实验结果证明 了 UC-Net 的有效性。

2. 相关工作

2.1. RGB-D 显著性检测

根据 RGB 图像与深度图像之间互补信息的融合 方式,现有的 RGB-D 显著性检测模型大致可分为三 种:早期融合模型 [43]、后期融合模型 [54,24] 和跨层 融合模型 [41,5,7,6,64]。[43] 提出了早期融合模型, 为每对 RGB-D 图像的每个超像素生成特征,然后将其 输入至卷积神经网络以产生每个超像素的显著性特征。 [54] 引入了一种新的融合网络(AFNet)来自适应地融 合 RGB 图像和深度分支。[24] 以相似的流程通过全连 接层融合 RGB 图像和深度信息。[7] 采用多尺度多路 径网络融合不同模态的信息。[5] 提出了基于互补感知 的 RGB-D 显著性检测模型,该模型用一个互补感知融 合块来融合各模式同一阶段的特征。[6] 还提出了用于 多模态融合的注意力感知跨层组合块。[64] 在增强深度 线索之前整合了对比度,并采用流体金字塔整合框架 实现了多尺度跨模态的特征融合。为了有效地将几何 和语义信息集成到循环学习框架中, [41] 引入了深度诱 导的多尺度 RGB-D 显著性检测网络。

2.2. 基于 VAE 或 CVAE 的深度概率模型

自从 Kingma 等人 [30] 和 Rezende 等人 [45] 的开 创性工作以来, 变分自动编码器 (VAE) 及其条件性约 束的 CVAE[50] 在各种计算机视觉问题中得到了广泛 应用。为了训练 VAE, 需要一个重建损失函数来衡量 预测和真值的差异,以及一个正则化项来减少隐变量先 验和后验分布间的分歧。VAE 一般定义隐变量服从特 定的高斯分布,而 CVAE 将隐变量先验分布定义为条 件分布,即其利用输入观测值调节隐变量的先验分布, 从而产生输出。在低层视觉中, VAE 和 CVAE 已被应 用于图像背景建模 [33]、锐化样本的隐空间表示 [21]、 运动模式差异 [57]、医学图像分割模型 [3]、对图像固有 的歧义进行建模 [31] 等任务。同时, VAE 和 CVAE 在 不确定未来预测 [1,53]、人体运动预测 [47] 和形状引 导图生成 [11] 等更复杂的视觉任务中得到了广泛的应 用。近年来, VAE 算法已经扩展到 3D 领域的目标定 位应用中如三维网格变形 [52]、点云实例分割 [59] 等。

据我们所知, CAVE 还未被用于显著性检测。虽然 Li 等人 [33] 在显著性预测框架中采用了 VAE, 但仅使 用其对图像背景进行建模且通过重建残差区分显著目 标与背景。而本文使用 CVAE 来模拟标签变量,表明 人类标注的不确定性。本文是首次考虑到人类标注时 的不确定性而在显著性预测网络中使用 CVAE 的。

3. 模型

本节介绍的是基于条件变分自动编码器的 RGB-D 显著性检测概率模型,该模型学习的是显著性图的分 布而非单个预测。设 $\xi = \{X_i, Y_i\}_{i=1}^N$ 为训练数据集,其 中 $X_i = \{I_i, D_i\}$ 表示 RGB-D 输入(由 RGB 图像 I_i 和深度图 D_i 组成), Y_i 表示真值显著性图。本文的模 型在训练和测试期间的整个流程分别如图2和图3所示。

本文的网络主要分为 5 个模块: 1) 隐藏层网络 (先 验网络和后验网络) 将 RGB-D 图像输入 X_i (用于先 验网络) 或者 X_i 和 Y_i (用于后验网络) 映射到低维隐 变量 $z_i \in \mathbb{R}^K (K$ 是隐空间的维数); 2) 深度修正网络, 它以 I_i 和 D_i 为输入,生成精确的深度图像 D'_i ; 3) 显 著性检测网络, 它将 RGB 图像 I_i 和精确深度图像 D'_i

²预测的多样性与图像的内容有关。具有简单内容的图像可以产生 一致的预测(图1中第一行),而复杂的图像可能会产生不同的预测 (图1中第二行)。

图 2. 网络训练流程。包括四个主要模块,即隐藏层网络(先验网络(μprior,σprior)和后验网络(μpost,σpost)),显著性网络,深度修正网络还有预测网络。隐藏层网络将 RGB-D 图像对 X (或与真值 Y 一起用于后验网络)映射到低维高斯隐变量 z。深度修正网络通过语义引导损失来细化原始深度图。该网络以 RGB 图像和细化后的深度图作为输入,生成显著性特征图。预测网络采用随机特征和确定性特征生成最终的显著性图。如图3所示,本文在测试阶段进行显著性一致步骤,该步骤根据真值显著性图生成机制来生成最终的显著性图。

图 3. 网络测试流程。本文对先验网络进行多次采样,以产生 多样化和准确的预测。然后,显著性一致模块用于获得最终 预测的多数投票结果。

映射到显著性特征图 S_i^d 中; 4) 预测网络,它利用隐 藏层网络的随机特征 S_i^s 和显著性网络的确定特征 S_i^d 来生成显著性预测图 P_i ; 5) 测试阶段的显著性一致模 块用以模拟显著性真值的生成机制,使用单个提供的 显著性真值图 Y_i 来评估性能。如下将介绍每个模块。

3.1. 基于 CVAE 的 RGB-D 显著性概率模型

条件变分自动编码器(CVAE)以输入数据 X 为 条件参数将隐变量的先验分布调整为高斯分布。条件 生成模型中一般包括三类变量:条件变量 X (设置的 RGB-D 图像对)、隐变量 z 和输出变量 Y。隐变量定 义为 $P_{\theta}(z|X)$,联合输入条件变量 X,我们获得输出变 量 Y 的分布 $P_{\omega}(Y|X,z)$,其中 z 的后验分布可表示为 $Q_{\phi}(z|X,Y)$ 。CVAE 的损失定义为:

$$\mathcal{L}_{\text{CVAE}} = E_{z \sim Q_{\phi}(z|X,Y)} [-\log P_{\omega}(Y|X,z)] + D_{KL}(Q_{\phi}(z|X,Y))|P_{\theta}(z|X)),$$
(1)

式中 $P_{\omega}(Y|X,z)$ 是在给定隐变量 z 和条件变量 X 时 P(Y) 的可能性, KL 散度 $D_{KL}(Q_{\phi}(z|X,Y)||P_{\theta}(z|X))$ 可以作为正则化损失来减小先验分布 $P_{\theta}(z|X)$ 和后验 分布 $Q_{\phi}(z|X,Y)$ 之间的差距。CVAE 旨在对编码误差 $D_{KL}(Q_{\phi}(z|X,Y)||P_{\theta}(z|X))$ 下的对数似然度 P(Y)进 行建模。本文遵循 CVAE 的标准做法 [50],设计了一 个基于 CVAE 的 RGB-D 显著性检测网络,并如下描 述模型的各个部分。

本文把先验和后验网络的参数集分别定义为 ($\mu_{\text{prior}}, \sigma_{\text{prior}}$)和 ($\mu_{\text{post}}, \sigma_{\text{post}}$)。公式(1)中的 KL 散度 用于衡量先验分布 $P_{\theta}(z|X)$ 和后验分布 $Q_{\phi}(z|X,Y)$ 间 分布不匹配的程度,换句话讲,KL 散度用于代表用 $Q_{\phi}(z|X,Y)$ 表示 $P_{\theta}(z|X)$ 时丢失的信息数量。CVAE

图 4. 隐藏层网络的详细结构,其中 K 为隐空间的维数, "c1_4K"表示卷积核为 1 × 1 输出通道大小为 4K 的卷积 层,"GAP"表示全局平均池化。

的典型应用涉及使用多个真值 Y [31] 来产生信息 $z \in \mathbb{R}^{K}$, z 中每个位置代表可能存在的标签变体或 能致显著性标注多样的因素。由于只有一个真值, 网络 会单一匹配已有的标注 Y, 所以直接使用提供的单一 真值进行训练可能无法产生多样化的预测结果。

生成多种预测:为了产生多样化且精确的预测,本文提 出迭代隐藏技术 [49] 来生成更多标注,其灵感来于方 向转移理论,如图5所示。本文利用训练集的均值以迭 代的方式隐藏 RGB 图像中的显著区域。RGB 图像及 其对应的真值被设置为"新标签生成"技术的开端。首先 将显著物体的真值隐藏在 RGB 图像里,然后将修改后 的图像反馈到现有的 RGB 显著性检测模型 [42] 中,生 成显著性图并将其作为一个候选标注。本文对每个训 练图像重复 3 次显著目标隐藏技术³以获得(包括真值 在内)的 4 组不同的标注数据集,并且称这个数据集 为"AugedGT",即训练数据集。

训练期间, $Q_{\phi}(z|X,Y)$ 中的不同标注(如图5所示) 可使先验网络 $P_{\theta}(z|X)$ 对给定输入 X 的标记变体进 行编码。因为本文已通过隐藏技术得到了多样的标注, 所以期待网络能够对复杂背景的图像产生多样的预测。 测试过程中,每次采样都能获得通道数为 K 的一个随 机特征 S^{s} (作为"预测网络"的输入)如图3所示。

显著性网络:本文设计了显著性网络,从输入的 RGB-D 数据中产生一个确定的显著特征映射 *S^d*,优化的深 度数据来自深度修正网络。本文使用 VGG16[48] 作为 编码器,并移除第五个池化层后的网络结构。为扩大感 受野,本文采用 DenseASPP 算法 [58],在 VGG16 网 络的每阶上获得具有整个图像感受野的特征图。然后 级联这些特征映射并传递到另一个卷积层以获得 *S^d*。 显著网络的细节如图6所示,其中"c1_M"表示卷积核 尺寸为 1×1 的卷积层,*M* 表示 *S^d* 的通道数。

特征扩展: 隐藏层网络(测试期间先验网络如图3中"采 样"所示,后验网络如图2所示)的统计信息(尤其是 $(z \sim \mathcal{N}(\mu, \operatorname{diag}(\sigma^2)))$ 构成了特征扩展模块的输入。在

图 5. 新标签的生成。第一行:迭代隐藏的显著性预测区域, 在第一幅图像中没有隐藏任何区域。第二行:隐藏图像的对 应真值。

图 6. 显著性网络, 其中"S1"代表了 VGG16 网络的第一阶段, "daspp"是 DenseASPP 的模块 [58]。

K 维向量的每个位置上给定一对 (μ^k, σ^k),即可得到 潜向量 $z^k = \sigma^k \odot \epsilon + \mu^k$,其中 $\epsilon \in \mathcal{N}(0, \mathbf{I})$ 。为与确 定的显著性特征 S^d 融合,本文通过定义 ϵ 为二维高斯 噪声图使 z^k 扩展为与 S^d 空间大小相同的特征图。当 k = 1, ..., K 时,可得到 K (隐空间尺寸)通道的随机 特征 S^s 来表示标注的不确定性。

预测网络: 隐藏层网络生成表示标签变量的随机特征 S^{s} ,显著性网络以 X 为输入产生确定性的显著性特 征 S^{d} 。本文提出预测网络来融合上述分支如图2所示。 S^{s} 和 S^{d} 的简单级联可能使网络只能从确定的特征中 学习,无法对标记变量进行建模。受 [47]的启发,本 文将 S^{s} 和 S^{d} 按通道混合使网络无法区分确定分支和 概率分支的特征。又将 S^{d} 和 S^{s} 级联,形成通道数为 K+M的特征图 S^{sd} 。并且定义 K+M 维变量 r (可 学习参数)代表 1,2,...,K+M 可能的排序,再根据 r对 S^{sd} 进行智能通道混合得到混合特征 S^{msd} 。预测网 络用于将 S^{msd} 映射到单通道显著性图 P中,预测网 络包含 3 个输出通道数分别为 K, K/2, 1的 1×1 的卷 积层。在测试过程中使用多个随机特征 S^{s} ,就能以多 次从隐藏层网络 $\mathcal{N}(\mu_{\text{prior}}, diag(\sigma^{2}_{\text{prior}}))$ 中对 S^{s} 进行采 样的方式来获得多个预测。

3.2. 深度修正网络

RGB-D 显著性检测主要采用两种方法获取深度数据: 一是通过微软 Kinect 等深度传感器, 例如 DES [8]

和 NLPR[40] 数据集; 二是从立体相机计算深度, 例如 SSB[39] 和 NJU2K[27]。不管捕获技术如何, 噪声都是 深度数据中固有的。本文提出了一个语义引导的深度 修正网络来产生如图2所示的精确深度信息, 该网络被 称为"深度修正网络"。深度修正网络的编码部分与"显 著性网络"一致, 解码部分则由四个连续的卷积层和双 线性插值部分组成。假设深度图的边缘与 RGB 图像的 边缘对齐, 采用边界 IOU 损失 [38] 作为深度修正网络 的正则化器, 以 RGB 图像的强度为向导, 来实现深度 的精确化。那么深度修正网络的总损失定义为:

$$\mathcal{L}_{\text{Depth}} = \mathcal{L}_{sl} + \mathcal{L}_{\text{Ioub}},\tag{2}$$

其中 \mathcal{L}_{sl} 表示精确深度 D' 和原始深度 D 间的平滑损 失 ℓ_1 , \mathcal{L}_{ioub} 是 RGB 图像 I 的精确深度 D' 和强度 Ig间的边界 IOU 损失。给定预测的深度图 D' 和 RGB 图 像的强度值 Ig,本文遵循 [38] 来计算 D' 和 Ig 的一 阶导数,随后计算了 D' 和 Ig 梯度的幅值 gD' 和 gI, 并将边界 IOU 损失定义如下:

$$\mathcal{L}_{\text{Ioub}} = 1 - 2 \frac{|gD' \cap gI|}{|gD'| + |gI|}.$$
(3)

3.3. 显著性一致模块

显著性检测具有一定的主观性,通常需要多个注释 者对一幅图像进行标注,通过多数投票策略得到最终 的真值显著性图 [17]。尽管在显著性检测领域中,如何 获得真值是众所周知的;但目前仍未有将该机制嵌入 深度显著性框架的研究。现有模型将显著性检测定义为 点估计问题而非分布估计问题。相反本文使用 CVAE 获取显著性分布。接下来将显著性一致方法嵌入概率 框架,以计算测试阶段不同预测的多数投票结果,如 图3所示。

测试过程中,本文用固定的 μprior 和 σprior 对先验 网络进行抽样得到随机特征 S^s。用显著性网络中的每 个 S^s 和确定性特征 S^d,得到显著性预测 P 的一个变 体。为了得到 C 种不同的预测 P¹,...,P^C,本文对先 验网络进行 C 次采样。然后同时将多重预测输入至显 著一致性模块中,来获得预测的一致性。

给定多个预测 $\{P^c\}_{c=1}^C$, 其中 $P^c \in [0,1]$ 。我们先 让 P^c 执行自适应阈值 [4] 来预测二进制⁴变量 P_b^c 。每 个像素 (u,v)都得到 C 维特征向量 $P_{u,v} \in \{0,1\}$ 。本文 定义 $P_b^{mjv} \in \{0,1\}$ 为代表 $P_{u,v}$ 多数投票的单通道显 著性图。定义指标 $\mathbf{1}^c(u,v) = \mathbf{1}(P_b^c(u,v) = P_b^{mjv}(u,v))$ 来呈现二进制预测与多数预测是否一致。若 $P_b^c(u,v) = P_b^{mjv}(u,v)$,则 $\mathbf{1}^c(u,v) = 1$,否则 $\mathbf{1}^c(u,v) = 0$ 。经过 显著性一致模块后可得灰度显著性图,如下所示:

$$P_g^{mjv}(u,v) = \frac{\sum_{c=1}^{C} \mathbf{1}^c(u,v)}{C} \sum_{c=1}^{C} (P_b^c(u,v)\} \times \mathbf{1}^c(u,v)).$$
(4)

3.4. 目标函数

在此阶段,损失函数由 *L*_{CVAE} 和 *L*_{Depth} 两部分 组成。本文基于类间区分和类内相似性假设,提出以平 滑损失为正则化器来实现边缘感知的显著性检测。继 [56] 之后,定义了显著性图在平滑项下的一阶导数为

$$\mathcal{L}_{\text{Smooth}} = \sum_{u,v} \sum_{d \in \overrightarrow{x}, \overrightarrow{y}} \Psi(|\partial_d P_{u,v}| e^{-\alpha |\partial_d Ig(u,v)|}), \quad (5)$$

其中 Ψ 被定义为 $\Psi(s) = \sqrt{s^2 + 1e^{-6}}$, $P_{u,v}$ 是 (u,v)处的预测显著性图, Ig(u,v) 是图像强度, d 表示在 \vec{x} 和 \vec{y} 上的偏导数。本文根据 [56] 设定 $\alpha = 10$ 。

平滑度损失 (公式(5)) 和边界 IOU 损失 (公式(3)) 都需要强度 *Ig*。根据 [60] 本文将 RGB 图像 *I* 转换为 灰度强度图像 *Ig*:

 $Ig = 0.2126 \times I^{lr} + 0.7152 \times I^{lg} + 0.0722 \times I^{lb}$, (6) 其中 I^{lr} , I^{lg} 和 I^{lb} 表示从原始颜色空间移除伽马函数 后线性颜色空间中的颜色分量。 I^{lr} 通过以下方式实现:

$$I^{lr} = \begin{cases} \frac{I^r}{12.92}, & I^r \le 0.04045, \\ \left(\frac{I^r + 0.055}{1.055}\right)^{2.4}, & I^r > 0.04045. \end{cases}$$
(7)

其中 *I^r* 是图像 *I* 的原始红色通道,本文用与公式(7)相同的方法计算 *I^g* 和 *I^b*。

本文的采用了平滑损失 \mathcal{L}_{Smooth} 、深度损失 \mathcal{L}_{Depth} 和条件变分自动编码损失 \mathcal{L}_{CVAE} ,最终的损失函数定义如下:

$$\mathcal{L}_{\rm sal} = \mathcal{L}_{\rm CVAE} + \lambda_1 \mathcal{L}_{\rm Depth} + \lambda_2 \mathcal{L}_{\rm Smooth}.$$
 (8)

本文实验中设定 $\lambda_1 = \lambda_2 = 0.3$ 。

训练细节:本文将通道数 S^d 设为 M = 32,潜在空间的规模设为 K = 8。使用 Pytorch 对模型进行训

⁴作为真值图中的 $Y \in \{0,1\}$,本文生成一系列二值预测,每个预 测值代表一种显著性定义的概率。

练,并在图片网络上进行 VGG16 参数预训练,初始 化显著性网络和深度修正网络的编码器。新的权重层 用 *N*(0,0.01) 初始化,偏差设置为常数。并且使用了 动量 0.9 的 Adam 方法,每一轮训练之后学习率降低 10%。基本学习率初始化为 1e-4。整个训练在一台装有 英伟达精视 RTX 图形处理器的台式机上运行了 13 个 小时,训练批量为 6 批,训练轮数为 30 次。输入尺寸 为 352 × 352 的图像,测试阶段每幅图平均用时 0.06s。

4. 实验结果

4.1. 准备工作

数据集:本文在六个数据集上进行了实验,包括五个广 泛使用的 RGB-D 显著性检测测试数据集(名字分别 为 NJU2K [27], NLPR [40], SSB [39], LFSD [34], DES [8])和一个新发布的数据集(SIP [17])。参考 [41]训 练数据集包括 NJU2K [27] 数据集的 1,485 张图像对和 NLPR [40] 数据集的 700 张图像。

模型比较:将本文的方法与 18 种算法进行了比较,包括 10 种手工设计的传统模型和 8 种 RGB-D 显著性检测深度模型。

评价指标:本文采用四个评价指标,两个广泛使用的 指标:1)平均绝对误差(MAE \mathcal{M});2)平均 F 测度 (F_{β})以及两个最近提出的:3)对比增强测度(均值 Emeasure E_{ξ})[14])4)结构测度(S-measure, S_{α})[13]。

4.2. 性能比较

定量比较:表1中展示了本文方法和对比方法的性能。 结果表明,本文的方法在所有的数据集上都取得了最 佳性能,特别是在 SSB[39] 和 SIP[17] 上,本文的方法 在 S-测度、E-测度和 F-测度上实现了显著的性能提升 和 MAE 的大幅度下降。图7中给出了对比方法和本文 的 E-测度和 F-测度曲线。可以观察到本文的方法不仅 产生了稳定的 E-测度和 F-测度而且性能是最好的。

定性比较: 在图8中,本文展示了五幅图,图像展示的 是本文方法的结果与一种新发布的 RGB-D 显著性检 测方法 (DMRA [41]) 和两种广泛使用的产生结构化输 出的方法进行比较的结果,这两种方法是 M-head[46] 和 MC-dropout[29] (在消融实验部分将详细讨论这两 种方法)。通过用 M-head 和 MC-dropout 分别代替 CVAE,本文设计了基于 M-head 和 MC-dropout 的 结构化显著性检测模型。图8的结果表明,本文的方法 不仅可以对复杂背景下的图像进行高精度的预测(与 DMRA 相比 [41]),而且可以对复杂背景下的图像(图 中第一行和最后一行所示)进行多种多样的预测(与基 于 M-head[46] 和 MC-dropout[29] 的模型相比)。

4.3. 消融实验

本文进行了八个实验(如表2所示),来全面分析本 文的框架,其中包括网络结构("M1","M2","M3"),概 率模型选择("M4","M5","M6"),数据源选择("M7") 以及新标签生成技术的有效性("M8"))。当有结果比 本文好时就将其加粗。

隐空间规模:本文试图研究网络中高斯隐空间的维度 *K* 对网络的影响。经参数调整,发现 *K* = 8 的效果最 好。将 *K* = 32 作为"M1"来展示性能。"M1"的性能比 本文的结果差表明隐空间的规模是本文框架中的一个 重要参数。本文进一步用 *K* \in [2,12] 进行了更多的实 验,发现用 *K* \in [6,10] 的预测结果相对稳定。

深度修正网络的效果:为了说明深度修正网络的有效性,故删除了这个分支,并将 RGB 图像和深度数据的级联反馈给显著性网络,如"M2"所示,它比本文的方法效果差。在 DES 数据集 [8] 上,本文提出的方法在S-测度、E-测度和 F-测度上都取得了约 4% 的改进,这证明了深度修正网络的有效性。

显著性一致模块:为了模拟显著性标记的过程,本文 在测试过程中嵌入了显著性一致性模块(如图3所示), 以获得多个预测的多数投票。将其从本文的框架中移 除,并从先验网络 $P_{\theta}(z|X)$ 中随机抽取样本测试网络 性能,以"M3"表示,与对比方法相校本文的效果是最 好的。同时,在显著一致模块的嵌入下,本文取得的性 能更好,这说明了显著性一致模块的有效性。

VAE 和 CVAE: 本文使用 CVAE 来模拟标记的不确定性,同时使用后验网络和先验网络来估计隐变量。 为了检验 z 的先验分布为标准正态分布、后验分布为 $P_{\theta}(z|X)$ 时本文模型的表现,本文设计模型"M4",发 现其性能与 SOTA RGB-D 模型旗鼓相当。基于条件变 分自动编码 [50] 模型进一步提升了"M4"的性能,证明 了本文解决方案的有效性。

多头模型 (M-head) 和 CVAE: 多头模型 [46] 使用 不同的解码器和一个共享的编码器产生多个预测,损 失函数被定义为多个预测中最接近的一个。本文删除 隐藏网络,并多次复制显著性网络的解码器来实现多

表 1. 在 6 个 RGBD 显著性数据集上,对 10 个领先的手工特征模型和 8 个深度模型进行了实验。↑ & ↓ 分别表示越大和越小越好,在此本文采用均值 F_{β} 和均值 E_{ξ} [14]。

		基于特征的手工制作模型								深度模型									
量」	度 LHI	M CI	B DES	M GP	CDCP	ACSD	LBE	DCMC	MDSF	SE	DF	AFNet	t CTMF	MMCI	PCF	TANet	CPFF	DMRA	UC-Net
	[40] [3	5] [8]	[44]	[66]	[27]	[19]	[9]	[51]	[22]	[43]	[54]	[24]	[7]	[5]	[6]	[64]	[41]	Ours
S_{α}	↑ .51	4.6	32 .665	.527	.669	.699	.695	.686	.748	.664	.763	.822	.849	.858	.877	.879	.878	.886	.897
$_{N III \varrho K} [27] F_{\beta}$	↑ .32	8.49	98 .550	.357	.595	.512	.606	.556	.628	.583	.653	.827	.779	.793	.840	.841	.850	.873	.886
$MJUZK [27] E_{\xi}$	\uparrow .44	7.5'	72 .590	.466	6.706	.594	.655	.619	.677	.624	.700	.867	.846	.851	.895	.895	.910	.920	.930
<i>M</i>	↓ .20	5.19	99 .283	.211	.180	.202	.153	.172	.157	.169	.140	.077	.085	.079	.059	.061	.053	.051	.043
S_{α}	\uparrow .56	2.6	15 .642	.588	3 .713	.692	.660	.731	.728	.708	.757	.825	.848	.873	.875	.871	.879	.835	.903
SSB [39] F_{β}	↑ .37	8.48	89 .519	.405	5 .638	.478	.501	.590	.527	.611	.617	.806	.758	.813	.818	.828	.841	.837	.884
$E E E_{\xi}$	\uparrow .48	4.50	61 .579	.508	3.751	.592	.601	.655	.614	.664	.692	.872	.841	.873	.887	.893	.911	.879	.938
<i>M</i>	↓ .17	2.10	66 .295	.182	2.149	.200	.250	.148	.176	.143	.141	.075	.086	.068	.064	.060	.051	.066	.039
S_{lpha}	↑ .57	8.64	45 .622	.636	6.709	.728	.703	.707	.741	.741	.752	.770	.863	.848	.842	.858	.872	.900	.934
DES [8] $\frac{F_{\beta}}{-}$	↑ .34	5.5	02 .483	.412	2.585	.513	.576	.542	.523	.618	.604	.713	.756	.735	.765	.790	.824	.873	.919
E_{ξ}	↑ .47	7.5'	72 .566	.503	3.748	.613	.650	.631	.621	.706	.684	.809	.826	.825	.838	.863	.888	.933	.967
<u>M</u>	↓ .11	4 .10	0 .299	.168	3 .115	.169	.208	.111	.122	.090	.093	.068	.055	.065	.049	.046	.038	.030	.019
S_{α}	↑ .63	0.6	32 .572	.655	5.727	.673	.762	.724	.805	.756	.806	.799	.860	.856	.874	.886	.888	.899	.920
$NLPR$ [40] $\frac{F_{\beta}}{D}$	1.42	7.4	21 .430	.451	.609	.429	.636	.542	.649	.624	.664	.755	.740	.737	.802	.819	.840	.865	.891
E_{ξ}	1.56	0.50	57 .542	.571	1.782	.579	.719	.684	.745	.742	.757	.851	.840	.841	.887	.902	.918	.940	.951
<u>M</u>	↓ .10	8.10	J8 .312	.140	.112	.179	.081	.117	.095	.091	.079	.058	.056	.059	.044	.041	.036	.031	.025
S_{α}	1].55 ∧ 20	(.5)	$\frac{20}{76}$ $\frac{722}{616}$.640) .717	.734	.730	.753	.700	.698	.791	.738	.796	.787	.794	.801	.828	.847	.864
$LFSD [34] \frac{r_{\beta}}{r_{\beta}}$	1 .39	0.3 1.44	10 .012 35 629	.018	0.000 0 0.000	.300	.012	.000	.021	.040	.079	.730	.750	.122	./01	.//1	.011	.840	.655
L_{ξ}	1 21	1.40 1.0	18 - 249	185	2 167	188	208	155	100	167	120	.790	.010	120	.010	.021	.003	.895	.901
	↓ ·21 ↑ 51	1 .2.	57 616	585	2 505	732	727	683	717	628	653	720	716	.132	842	.111	.000	806	875
S_{α} F_{α}	1 .01	1.0. 7.2	11 /04	.380	/82	542	572	500	568	515	465	702	608	.033	.042 814	.035	.000	.300	867
$SIP [17] \frac{\Gamma_{\beta}}{E_{\gamma}}$	↓ .20 ↑	, .3² 7_⊿!	11 .490 55 .56/	511	683	.042 614	651	598	645	592	565	793	704	845	878	.803 870	893	.011	914
L_{ξ}	1.40	4 .19	$\frac{10}{2}$ $\frac{10}{298}$	179	3 224	.172	200	.186	.167	.164	185	.133	139	.040	.071	.075	.064	.044	.051
5.1	¥ ·10		.200	.110		1114	.200	.100	.101	.101	1.100		.100		.011		.001		

个预测(在本文中用"M5"表示)。本文将"M5"的表现 作为多次预测的均值。"M5"优于 SOTA 模型(*e.g.*, DMRA),而基于多头的方法("M5")与基于 CVAE 的模型(*UC-Net*)仍存在差距。

MC-dropout 和 CVAE 的比较: MC-dropout[29] 在 测试阶段使用随机淘汰的方式将随机性引入网络。本

文遵循 [29],并去掉隐变量的先验和后验网络,测试阶 段在显著性网络的编码和解码部分使用随机 dropout。 本文重复了 5 次该方法 (随机淘汰率 = 0.1),并且生 成的平均成绩为"M6"。与"M5"相似,"M6"的性能也优 于 SOTA 模型,而基于 CVAE 模型的性能更为优越。 三通道法和深度图:三通道法 [23] 是一种广泛使用的

图 8. 显著性图的比较。"MH1"和"MH2"是多头模型的两个预测结果。"DP1"和"DP2"是测试期间两次 MC-dropout 的预测。 "本文 (1)"和"本文 (2)"是本文基于条件变分自动编码模型的两个预测。对于具有分歧的图像,多头模型和 MC-dropout 模型基 本上只能产生一致的输出, (如第 5th 行所示), 而本文的模型可以产生多样化的预测结果。

表 2. RGB-D 显著性数据集的消融研实验。

		· · · · · · · · · · · · · · · · · · ·		- <u></u>			-H - H -	11424 191	~~~	0	
	量度	UC-Net	M1	M2	M3	M4	M5	M6	M7	M8	M9
NJU2K [27]	$S_{\alpha} \uparrow$.897	.866	.893	.905	.871	.885	.881	.893	.838	.866
	F_{β} \uparrow	.886	.858	.887	.884	.851	.878	.878	.884	.787	.812
	$E_{\xi} \uparrow$.930	.905	.930	.927	.910	.923	.927	.932	.840	.866
	$\mathcal{M}\downarrow$.043	.060	.046	.045	.059	.047	.046	.044	.084	.075
SSB [39]	$S_{\alpha}\uparrow$.903	.854	.893	.900	.867	.891	.893	.898	.855	.872
	F_{β} \uparrow	.884	.831	.876	.868	.834	.864	.876	.882	.793	.805
	$E_{\xi}\uparrow$.938	.894	.911	.922	.907	.921	.931	.934	.854	.870
	$\mathcal{M}\downarrow$.039	.060	.043	.047	.057	.047	.043	.040	.073	.068
DES [8]	$S_{\alpha}\uparrow$.934	.876	.896	.928	.897	.911	.896	.918	.811	.911
	F_{β} \uparrow	.919	.844	.868	.902	.867	.897	.868	.904	.724	.843
	$E_{\xi}\uparrow$.967	.906	.928	.947	.930	.945	.928	.953	.794	.910
	$\mathcal{M}\downarrow$.019	.035	.026	.024	.033	.024	.026	.023	.065	.036
40]	$S_{\alpha}\uparrow$.920	.878	.919	.918	.890	.899	.910	.915	.850	.883
NLPR	$F_\beta \uparrow$.891	.846	.897	.878	.845	.875	.867	.889	.759	.795
	$E_{\xi}\uparrow$.951	.911	.953	.941	.924	.937	.933	.951	.841	.883
	$\mathcal{M}\downarrow$.025	.039	.024	.029	.037	.029	.028	.025	.057	.045
34]	$S_{\alpha}\uparrow$.864	.799	.847	.862	.820	.838	.847	.853	.729	.823
LFSD	F_{β} \uparrow	.855	.791	.838	.841	.802	.833	.838	.848	.661	.779
	$E_{\xi}\uparrow$.901	.829	.879	.885	.865	.875	.879	.891	.720	.818
	$\mathcal{M}\downarrow$.066	.101	.079	.075	.093	.079	.079	.073	.145	.108
SIP [17]	$S_{\alpha}\uparrow$.875	.846	.867	.870	.851	.859	.867	.865	.810	.845
	$F_\beta \uparrow$.867	.837	.860	.848	.821	.853	.860	.855	.751	.795
	$E_{\xi}\uparrow$.914	.884	.908	.901	.893	.905	.908	.908	.816	.852
	$\mathcal{M}\downarrow$.051	.068	.056	.059	.067	.057	.056	.056	.094	.079

技术,它将深度数据编码为三个通道:水平视差、离地 高度及局部像素曲面法线和理论重力方向的夹角。为 了获得更好的特征识别结果,三通道法被广泛应用于 RGB-D 相关的密集预测模型 [10,24] 中。为了测试三 通道法是否适用于本文的情况,用其替换深度图,性能 如"M7"所示。本文发现三通道法代替原始深度数据取得了类似的性能。

AugGT 有效性: 为了产生不同的预测,本文遵循 [49] 为训练数据集生成不同的标签。为了说明该策略的有 效性,本文以 RGB-D 图像作为输入,仅用显著性网络 进行训练生成单通道显著图。"M8""M9"分别表示使用 训练数据集和增强的训练数据集。相比"M8","M9"性 能上的优势证明了新的标签生成技术的有效性。

5. 总结

本文受人类标注时的不确定性启发,提出了首个 名为 UC-Net 的不确定性网络,该网络基于条件变分 自动编码器用于 RGB-D 显著性检测。现有的方法将 显著性检测作为一个点估计问题,而本文提出学习显 著性图的分布。本文的模型能够通过显著性一致模块 生成多个在真值标注生成过程中被舍弃的标签。通过 在六个标准且具有挑战性的数据集上进行定量和定性 评估,其结果证明了本文在学习显著性图的分布方面 的优势。在将来,我们希望将本文的方法扩展到其他显 著性检测问题(例如,VSOD [18]、RGB SOD [12,65]、 Co-SOD [16])。此外,我们计划获取具有多个人类注释 的新数据集,以进一步建模交互式图像分割 [36]、伪装 物体检测 [15] 等人类不确定性的统计。

参考文献

- Abubakar Abid and James Y. Zou. Contrastive Variational Autoencoder Enhances Salient Features. CoRR, abs/1902.04601, 2019.
- [2] Radhakrishna Achanta, Sheila Hemami, Francisco Estrada, and Sabine Susstrunk. Frequency-tuned salient region detection. In *IEEE CVPR*, pages 1597– 1604, 2009.
- [3] Christian F. Baumgartner, Kerem Can Tezcan, Krishna Chaitanya, Andreas M. Hötker, Urs J. Muehlematter, Khoschy Schawkat, Anton S. Becker, Olivio Donati, and Ender Konukoglu. PHiSeg: Capturing Uncertainty in Medical Image Segmentation. In *MICCAI*, pages 119–127, 2019.
- [4] Ali Borji, Ming-Ming Cheng, Huaizu Jiang, and Jia Li. Salient Object Detection: A Benchmark. *IEEE TIP*, 24(12):5706–5722, 2015.
- [5] Hao Chen and Youfu Li. Progressively complementarity-aware fusion network for RGB-D Salient Object Detection. In *IEEE CVPR*, pages 3051–3060, 2018.
- [6] Hao Chen and Youfu Li. Three-stream Attentionaware Network for RGB-D Salient Object Detection. *IEEE TIP*, pages 2825–2835, 2019.
- [7] Hao Chen, Youfu Li, and Dan Su. Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection. *PR*, 86:376–385, 2019.
- [8] Yupeng Cheng, Huazhu Fu, Xingxing Wei, Jiangjian Xiao, and Xiaochun Cao. Depth enhanced saliency detection method. In ACM ICIMCS, pages 23–27, 2014.
- [9] Runmin Cong, Jianjun Lei, Changqing Zhang, Qingming Huang, Xiaochun Cao, and Chunping Hou. Saliency detection for stereoscopic images based on depth confidence analysis and multiple cues fusion. *IEEE SPL*, 23(6):819–823, 2016.
- [10] Dapeng Du, Limin Wang, Huiling Wang, Kai Zhao, and Gangshan Wu. Translate-to-Recognize Networks for RGB-D Scene Recognition. In *IEEE CVPR*, pages 11836–11845, 2019.
- [11] Patrick Esser, Ekaterina Sutter, and Björn Ommer. A Variational U-Net for Conditional Appearance and Shape Generation. In *IEEE CVPR*, pages 8857–8865, 2018.

- [12] Deng-Ping Fan, Ming-Ming Cheng, Jiang-Jiang Liu, Shang-Hua Gao, Qibin Hou, and Ali Borji. Salient objects in clutter: Bringing salient object detection to the foreground. In *ECCV*, pages 186–202, 2018.
- [13] Deng-Ping Fan, Ming-Ming Cheng, Yun Liu, Tao Li, and Ali Borji. Structure-measure: A new way to evaluate foreground maps. In *IEEE ICCV*, pages 4548– 4557, 2017.
- [14] Deng-Ping Fan, Cheng Gong, Yang Cao, Bo Ren, Ming-Ming Cheng, and Ali Borji. Enhanced-alignment Measure for Binary Foreground Map Evaluation. In *IJCAI*, pages 698–704, 2018.
- [15] Deng-Ping Fan, Ge-Peng Ji, Guolei Sun, Ming-Ming Cheng, Jianbing Shen, and Ling Shao. Camouflaged Object Detection. In *IEEE CVPR*, 2020.
- [16] Deng-Ping Fan, Zheng Lin, Ge-Peng Ji, Dingwen Zhang, Huazhu Fu, and Ming-Ming Cheng. Taking a Deeper Look at the Co-salient Object Detection. In *IEEE CVPR*, 2020.
- [17] Deng-Ping Fan, Zheng Lin, Zhao Zhang, Menglong Zhu, and Ming-Ming Cheng. Rethinking RGB-D salient object detection: Models, datasets, and largescale benchmarks. *IEEE TNNLS*, 2020.
- [18] Deng-Ping Fan, Wenguan Wang, Ming-Ming Cheng, and Jianbing Shen. Shifting more attention to video salient object detection. In *IEEE CVPR*, pages 8554– 8564, 2019.
- [19] David Feng, Nick Barnes, Shaodi You, and Chris Mc-Carthy. Local background enclosure for RGB-D salient object detection. In *IEEE CVPR*, pages 2343–2350, 2016.
- [20] Keren Fu Fu, Deng-Ping Fan, Ge-Peng Ji, and Qijun Zhao. JL-DCF: Joint Learning and Densely-Cooperative Fusion Framework for RGB-D Salient Object Detection. In *IEEE CVPR*, 2020.
- [21] Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taïga, Francesco Visin, David Vázquez, and Aaron C. Courville. PixelVAE: A Latent Variable Model for Natural Images. In *ICLR*, 2016.
- [22] Jingfan Guo, Tongwei Ren, and Jia Bei. Salient object detection for rgb-d image via saliency evolution. In *ICME*, pages 1–6, 2016.
- [23] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra Malik. Learning rich features from RGB-

D images for object detection and segmentation. In *ECCV*, pages 345–360, 2014.

- [24] Junwei Han, Hao Chen, Nian Liu, Chenggang Yan, and Xuelong Li. CNNs-based RGB-D saliency detection via cross-view transfer and multiview fusion. *IEEE TCYB*, pages 3171–3183, 2018.
- [25] Laurent Itti and Christof Koch. A saliency-based search mechanism for overt and covert shifts of visual attention. VR, 40(10):1489 1506, 2000.
- [26] Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based visual attention for rapid scene analysis. *IEEE TPAMI*, 20(11):1254–1259, 1998.
- [27] Ran Ju, Ling Ge, Wenjing Geng, Tongwei Ren, and Gangshan Wu. Depth saliency based on anisotropic center-surround difference. In *ICIP*, pages 1115–1119, 2014.
- [28] Shuhui Wang Jun Wei and Qingming Huang. F3Net: Fusion, Feedback and Focus for Salient Object Detection. In AAAI, 2020.
- [29] Alex Kendall, Vijay Badrinarayanan, , and Roberto Cipolla. Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding. In *BMVC*, 2017.
- [30] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. In *ICLR*, 2013.
- [31] Simon Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R. Ledsam, Klaus Maier-Hein, S. M. Ali Eslami, Danilo Jimenez Rezende, and Olaf Ronneberger. A Probabilistic U-Net for Segmentation of Ambiguous Images. In *NeurIPS*, pages 6965–6975, 2018.
- [32] Olivier Le Meur and Thierry Baccino. Methods for comparing scanpaths and saliency maps: strengths and weaknesses. *Behavior Research Meth*ods, 45(1):251–266, 2013.
- [33] Bo Li, Zhengxing Sun, and Yuqi Guo. SuperVAE: Superpixelwise Variational Autoencoder for Salient Object Detection. In AAAI, pages 8569–8576, 2019.
- [34] Nianyi Li, Jinwei Ye, Yu Ji, Haibin Ling, and Jingyi Yu. Saliency detection on light field. In *IEEE CVPR*, pages 2806–2813, 2014.
- [35] Fangfang Liang, Lijuan Duan, Wei Ma, Yuanhua Qiao, Zhi Cai, and Laiyun Qing. Stereoscopic saliency model using contrast and depth-guided-background prior. *Neurocomputing*, 275:2227–2238, 2018.

- [36] Zheng Lin, Zhao Zhang, Lin-Zhuo Chen, Ming-Ming Cheng, and Shao-Ping Lu. Interactive Image Segmentation with First Click Attention. In *IEEE CVPR*, 2020.
- [37] Yi Liu, Qiang Zhang, Dingwen Zhang, and Jungong Han. Employing Deep Part-Object Relationships for Salient Object Detection. In *IEEE ICCV*, 2019.
- [38] Zhiming Luo, Akshaya Mishra, Andrew Achkar, Justin Eichel, Shaozi Li, and Pierre-Marc Jodoin. Non-Local Deep Features for Salient Object Detection. In *IEEE CVPR*, 2017.
- [39] Yuzhen Niu, Yujie Geng, Xueqing Li, and Feng Liu. Leveraging stereopsis for saliency analysis. In *IEEE CVPR*, pages 454–461, 2012.
- [40] Houwen Peng, Bing Li, Weihua Xiong, Weiming Hu, and Rongrong Ji. Rgbd salient object detection: a benchmark and algorithms. In *ECCV*, pages 92–109, 2014.
- [41] Yongri Piao, Wei Ji, Jingjing Li, Miao Zhang, and Huchuan Lu. Depth-induced Multi-scale Recurrent Attention Network for Saliency Detection. In *IEEE ICCV*, 2019.
- [42] Xuebin Qin, Zichen Zhang, Chenyang Huang, Chao Gao, Masood Dehghan, and Martin Jagersand. BAS-Net: Boundary-Aware Salient Object Detection. In *IEEE CVPR*, 2019.
- [43] Liangqiong Qu, Shengfeng He, Jiawei Zhang, Jiandong Tian, Yandong Tang, and Qingxiong Yang. RGBD salient object detection via deep fusion. *IEEE TIP*, 26(5):2274–2285, 2017.
- [44] Jianqiang Ren, Xiaojin Gong, Lu Yu, Wenhui Zhou, and Michael Ying Yang. Exploiting Global Priors for RGB-D Saliency Detection. In *IEEE CVPRW*, pages 25–32, 2015.
- [45] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. In *ICML*, pages 1278–1286, 2014.
- [46] Christian Rupprecht, Iro Laina, Maximilian Baust, Federico Tombari, Gregory D. Hager, and Nassir Navab. Learning in an Uncertain World: Representing Ambiguity Through Multiple Hypotheses. In *IEEE ICCV*, pages 3611–3620, 2017.
- [47] Mohammad Sadegh Aliakbarian, Fatemeh Sadat Saleh, Mathieu Salzmann, Lars Petersson, Stephen

Gould, and Amirhossein Habibian. Learning Variations in Human Motion via Mix-and-Match Perturbation. *arXiv e-prints*, page arXiv:1908.00733, 2019.

- [48] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. In *ICLR*, 2014.
- [49] Krishna Kumar Singh and Yong Jae Lee. Hide-and-Seek: Forcing a Network to be Meticulous for Weaklysupervised Object and Action Localization. In *IEEE ICCV*, 2017.
- [50] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning Structured Output Representation using Deep Conditional Generative Models. In *NeurIPS*, pages 3483–3491, 2015.
- [51] Hangke Song, Zhi Liu, Huan Du, Guangling Sun, Olivier Le Meur, and Tongwei Ren. Depth-aware salient object detection and segmentation via multiscale discriminative saliency fusion and bootstrap learning. *IEEE TIP*, 26(9):4204–4216, 2017.
- [52] Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. Variational Autoencoders for Deforming 3D Mesh Models. In *IEEE CVPR*, 2018.
- [53] Jacob Walker, Carl Doersch, Harikrishna Mulam, and Martial Hebert. An Uncertain Future: Forecasting from Static Images Using Variational Autoencoders. In ECCVW, pages 835–851, 2016.
- [54] Ningning Wang and Xiaojin Gong. Adaptive Fusion for RGB-D Salient Object Detection. *IEEE Access*, 7:55277–55284, 2019.
- [55] Wenguan Wang, Jianbing Shen, Ming-Ming Cheng, and Ling Shao. An Iterative and Cooperative Top-Down and Bottom-Up Inference Network for Salient Object Detection. In *IEEE CVPR*, 2019.
- [56] Yang Wang, Yi Yang, Zhenheng Yang, Liang Zhao, Peng Wang, and Wei Xu. Occlusion Aware Unsupervised Learning of Optical Flow. In *IEEE CVPR*, 2018.
- [57] Yan, Xinchen, Rastogi, Akash, Villegas, Ruben, Sunkavalli, Kalyan, Shechtman, Eli, Hadap, Sunil, Yumer, Ersin, Lee, and Honglak. MT-VAE: Learning Motion Transformations to Generate Multimodal Human Dynamics. In *ECCV*, pages 276–293, 2018.
- [58] Maoke Yang, Kun Yu, Chi Zhang, Zhiwei Li, and Kuiyuan Yang. DenseASPP for Semantic Segmentation in Street Scenes. In *IEEE CVPR*, pages 3684– 3692, 2018.

- [59] Li Yi, Wang Zhao, He Wang, Minhyuk Sung, and Leonidas J. Guibas. GSPN: Generative Shape Proposal Network for 3D Instance Segmentation in Point Cloud. In *IEEE CVPR*, 2019.
- [60] Shivanthan A. C. Yohanandan, Adrian G. Dyer, Dacheng Tao, and Andy Song. Saliency Preservation in Low-Resolution Grayscale Images. In ECCV, 2018.
- [61] Jing Zhang, Deng-Ping Fan, Yuchao Dai, Saeed Anwar, Fatemeh Sadat Saleh, Tong Zhang, and Nick Barnes. Uc-net: Uncertainty inspired rgb-d saliency detection via conditional variational autoencoders. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 8582–8591, 2020.
- [62] Jing Zhang, Xin Yu, Aixuan Li, Peipei Song, Bowen Liu, and Yuchao Dai. Weakly-Supervised Salient Object Detection via Scribble Annotations. In *IEEE CVPR*, 2020.
- [63] Jing Zhang, Tong Zhang, Yuchao Dai, Mehrtash Harandi, and Richard Hartley. Deep Unsupervised Saliency Detection: A Multiple Noisy Labeling Perspective. In *IEEE CVPR*, pages 9029–9038, 2018.
- [64] Jia-Xing Zhao, Yang Cao, Deng-Ping Fan, Ming-Ming Cheng, Xuan-Yi Li, and Le Zhang. Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection. In *IEEE CVPR*, 2019.
- [65] Jia-Xing Zhao, Jiang-Jiang Liu, Deng-Ping Fan, Yang Cao, Jufeng Yang, and Ming-Ming Cheng. EGNet: Edge guidance network for salient object detection. In *IEEE ICCV*, pages 8779–8788, 2019.
- [66] Chunbiao Zhu, Ge Li, Wenmin Wang, and Ronggang Wang. An innovative salient object detection using center-dark channel prior. In *IEEE ICCVW*, 2017.